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Abstract

Computing systems have become ubiquitous in the modern world but their design

is far from one-size-fits-all. From battery-powered devices to supercomputers, de-

ployment requirements are a primary driver of heterogeneity in computer design. As

modern systems rely on parallelism and specialization to achieve their performance

and power goals, new challenges arise. The system’s complexity grows with the num-

ber of distinct hardware modules, complicating the verification of correct and secure

behavior. Moreover, expanding parallelization across more processing units (PUs) in-

creases the pressure on the memory hierarchy and inter-PU network, which results in

severe bottlenecks for applications traversing graph-like data structures with indirect

memory accesses (IMAs). These challenges call for re-thinking software abstractions

and hardware designs to achieve scalable and efficient systems, as well as introducing

robust methodologies to ensure their correctness. My dissertation aims to tackle these

challenges with three main thrusts.

First, to facilitate hardware designers applying formal verification to their mod-

ules, this dissertation introduces AutoSVA, a toolflow that generates formal verifi-

cation testbenches from module interface annotations. Testbenches generated with

AutoSVA have uncovered bugs in open-source projects, including a widely used RISC-

V CPU. Second, to alleviate IMA latency without increasing verification complexity,

this dissertation introduces MAPLE, a network-connected memory-access engine that

supports data pipelining and prefetching without requiring PU modifications. As

such, off-the-shelf PUs can offload IMAs to MAPLE, and consume data via software-

managed queues. Using MAPLE effectively mitigates memory latency, providing 2x

speedups over software- and hardware-only prefetching. Third, to further the scalabil-

ity of graph and sparse workloads, this dissertation co-designs scale-out architectures

with a data-centric execution model, Dalorex, where IMAs are split into tasks that

only access a confined address range and execute at the PU with dedicated access
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to that memory range. The parallelization of breadth-first-search on a billion-edge

graph across a million PUs results in nearly an order of magnitude faster runtimes

than Graph500’s top entries.

By introducing novel hardware designs, execution models, and verification tools,

this dissertation contributes towards addressing the challenges posed by the increasing

demand for high-performance, energy-efficient, and cost-effective computing systems.
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Chapter 1

Introduction

Moore’s Law, postulated by Gordon E. Moore in 1964 [111], predicted that because

of transistor miniaturization, the number of transistors on a chip would double every

18-24 months. Alongside, Dennard’s 1974 observation [48] suggested that as transis-

tors shrank, power density would stay constant, allowing for increased performance

without higher power consumption.

However, in the 2000s, Dennard scaling hit a power wall [59] due to the leakage

power consumed by the transistor’s sub-threshold current. As Figure 1.1 shows, this

power limitation led to a stagnation of clock frequency scaling, which left single-thread

performance improvement to rely on microarchitectural innovations. As a result, the

computing industry needed to exploit parallelism to continue increasing performance,

leading to the proliferation of multicore architectures.

In a parallel system, each processor operates independently, but they may interact

with each other through shared memory or message passing. The requirements for

data supply and inter-processor communication vary drastically between applications,

and these patterns are key factors in determining performance scaling.

This dissertation is motivated by the scalability challenges of applications with

strong memory- and communication requirements, as well as the need for a develop-
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Figure 1.1: Evolution of microprocessor characteristics over the last five decades
(retrieved from [150]) showing the number of transistors (orange), single-thread per-
formance (blue), clock speeds (green), power consumption (red), and the count of
logical cores (block), for many chips developed during this time. From the 1970s
to the mid 2000s, single-thread performance increased with the clock frequency and
transistor count. However, as Dennard scaling—–the principle that as transistors get
smaller, their power density stays constant—–faced a power wall, frequencies could
no longer be increased to improve performance. Consequently, the industry shifted
focus towards deploying more execution threads (logical cores) within each chip to
continue the improvements.

ment ecosystem that can efficiently integrate and verify new hardware components

in the modern era of heterogeneous computing systems.

1.1 Motivation: The Cambrian Explosion in Com-

puter Hardware

The inherent heterogeneity in application demands is exacerbated by (a) the ubiquity

of computing systems in the modern world, which are deployed in a wide range of
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settings, from brain implants [78] to supercomputers [115, 136], and (b) the increasing

specialization of hardware architectures to meet performance requirements at the

power budget of the target deployment.

These factors have led to the growth in the diversity of hardware designs that has

been described as a Cambrian explosion in the realm of computing [65]. While this

diversity is effective at meeting the performance and power requirements of different

domains, it also introduces complexity in the design, verification, and integration of

these systems.

The complexity of hardware design and verification grows with the number of

unique hardware modules. The more modules there are, the higher the risk that a

bug in the control logic of one module will indefinitely stall the rest of the system-

on-chip (SoC) [152]. Thus, it is paramount to foster a development ecosystem based

on modularity and reusability, rather than tightly-coupled, monolithic designs.

Motivated by these challenges, this dissertation introduces a methodology to facil-

itate the verification of new hardware components during the design stage, to ensure

that chains of transactions between modules make forward progress. This disserta-

tion also introduces a modular hardware component, integrated seamlessly via the

network-on-chip (NoC) that implements memory-access optimizations that were pre-

viously manually integrated within CPU cores. Modular designs not only facilitate

integration and verification but also enable configuring different ratios between CPU

cores and memory-fetch hardware, which can be tailored to the specific needs of the

application.

1.2 Motivation: The DECADES Project

With the goal of achieving the power and performance benefits of custom hardware

but with the flexibility of software, DARPA launched the Software-Defined Hard-
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ware (SDH) program in 2018. The Princeton and Columbia effort in the SDH pro-

gram was the Deeply-Customized Accelerator-Oriented Data-Supply Systems Synthe-

sis (DECADES) project. SDH aimed to develop a class of computing systems that

combine a series of hardware components that are both specialized and configurable

to meet the needs of a diverse set of applications, ranging from data-intensive graph

algorithms to compute-heavy machine learning kernels [42].

The Need for Accelerating Sparse Applications

Graph algorithms and sparse linear algebra are characterized by irregular, data-

dependent memory access patterns with little spatial or temporal reuse. Because

modern memory hierarchies are built upon the principles of spatial and temporal

locality, sparse irregular workloads are not efficiently processed by existing parallel

system designs. However, these workloads are pervasive in the big data era, in appli-

cations ranging from cyber security, finance, pharmaceutical research, social networks,

and recommendation systems [8, 24, 57, 60, 80, 86, 109]. Thus, the goal of DECADES

was to design and fabricate a chip that can efficiently process these irregular work-

loads, while also being general enough to be applicable to other domains captured by

the SDH program, and this dissertation contributes to that.

Real-World Constraints

Because the outcome of the SDH program includes a fabricated chip, design innova-

tions in DECADES had to consider the constraints of the fabrication process, ranging

from manufacturing timelines to implementation details such as meeting gate-delay

timing at the target frequency and appropriate modularity for place-and-route effi-

ciency. Another requirement was to keep the third-party CPU cores unmodified to

reduce the verification burden and to ease swapping them out for newer versions on
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future tapeouts. As such, this dissertation introduces innovations that consider these

real-world constraints, while meeting the performance goals of the project.

1.2.1 Common Challenges in Sparse Applications

While compute-bound applications thrive in accelerator-rich environments, memory

and communication-bound applications have not seen the same benefits. Of these,

the graph algorithms and sparse linear algebra kernels that SDH aimed to accelerate

have common challenges, such as (1) frequent indirect memory accesses (IMAs) arising

from pointer chasing, (2) low arithmetic intensity, and (3) atomic updates on parallel

implementations. This dissertation focuses on addressing the challenges presented by

these workloads, to which we refer as sparse applications throughout the text.

IMAs result in irregular and fine-grain memory access patterns, presenting signif-

icant data supply issues. IMAs frequently miss in the caches due to the scale of data

structures compared to the cache size, and the low spatial and temporal reuse of the

data. These misses lead to CPUs stalling due to the long latency of main-memory ac-

cesses. Moreover, they increase main-memory contention in multicore systems, which

hinders the scalability of sparse applications.

This dissertation has taken a multi-faceted approach to accelerating sparse appli-

cations by introducing hardware-software co-designs suited for different deployment

scales and needs, from full-stack multicore CPUs to scale-out accelerator-based sys-

tems.

1.2.2 Processing Sparse Applications at Scale

Beyond the first generation of the DECADES chip with 109 processing tiles that was

taped out in 2021 [55], the project had a roadmap for processing irregular applications

at a much larger scale. However, as the parallelization of these workloads increases,

the memory bandwidth bottleneck becomes more pronounced, due to shared-memory
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contention and the low effective utilization of fine-grain memory accesses. To continue

scaling beyond a hundred processing units (PUs), a distributed-memory architecture

is necessary to increase the memory bandwidth.

Distributed non-uniform memory access (NUMA) architectures have existed since

the 90s [94] but memory technology and integration scale have changed drastically

since then. Until recently, you could only have main memory NUMA on computing

clusters but now distributed main memory is also feasible on-chip [30, 33]. Inspired

by these recent developments, this dissertation introduces a novel data-centric pro-

gramming model and architecture design that migrates the compute to the data, to

overcome the memory latency and bandwidth bottlenecks, and to effectively scale

sparse applications to a million PUs.

1.3 Thesis Contributions

To overcome the data-supply challenges of IMAs when processing sparse applications

at scale, this dissertation introduces new execution models and hardware support,

while also carefully considering the constraints of the real-world deployment of these

innovations, e.g., design verification and cost-effective fabrication.

The main contributions of this dissertation are as follows:

• Lowering the Entry Barrier for Formal Property Verification (FPV):

Motivated by the need for agile development of new hardware components while

ensuring their correctness, this dissertation introduces a frontend to FPV tools

that empowers hardware designers to exhaustively test their modules as they

are developed. To do that, my work identified common interaction patterns

between hardware components and captured them in a simple language, Au-

toSVA [127], which is used to annotate the interface of a hardware module with

the expected behavior for each transaction (request-response pair). My work
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also developed a toolflow that uses these annotations to build a high-level model

of the module interactions and automatically generate an FPV testbench with

properties according to the annotated behavior. Because only the interface is

annotated, AutoSVA can be used even before starting to write the module’s

register-transfer level (RTL) code, allowing for agile test-driven development.

This effort toward democratizing formal verification has had a real-world im-

pact.

1. It has been used to test several modules in the DECADES SoC [55], in-

cluding the MAPLE engine [126] and the RISC-V CVA6 Ariane core [189],

uncovering and rectifying critical bugs that would have ended up in silicon.

Beyond the DECADES chip, the bugs uncovered and fixed by my work

on Ariane were incorporated into its open-source repository [123] and have

prevented them from being present in later chip tapeouts using Ariane.

2. AutoSVA is open-source [124] and has over 60 stars and 20 forks on

GitHub, among them many academic researchers and industry profession-

als.

3. The AutoSVA toolflow has been integrated into two later projects that

augment its capabilities for extended RTL coverage and security [128, 135].

• Accelerating sparse applications at different deployment levels: This

dissertation makes several contributions to overcoming the memory and com-

munication bottlenecks of the sparse application domain by introducing scal-

able hardware-software co-designs while remaining programmable and efficient

for other application domains. These contributions are applicable at different

deployment scales (e.g., from embedded to supercomputers) and target needs

(full-stack systems or accelerators). Particularly:
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1. To equip multicore SoCs with IMA latency tolerance while minimizing

the design verification burden, this dissertation introduces a communica-

tion mechanism between off-the-shelf CPU cores and accelerators in which

hardware support for specialized data-access techniques can be provided

without changes to the CPU, the ISA, or the memory hierarchy, and in

compliance with operating systems and virtual memory. My work devel-

oped the RTL of a memory-access engine, MAPLE, that utilizes this com-

munication mechanism to support prefetching, decoupled access-execute,

pipelining, and asynchronous atomic operations [106].

2. MAPLE has been formally verified and taped out into silicon within the

DECADES chip. It has been evaluated on the DECADES chip, where

CPU cores using MAPLE achieved 2× improvements over software-only

techniques when running graph and sparse applications. The combination

of software-orchestrated data accesses with hardware support is what also

renders MAPLE nearly 2× faster than prior hardware prefetching tech-

niques. MAPLE has been open-sourced [125] and utilized as the ground-

work for subsequent research on accelerator integration and communica-

tion [180].

3. Continuing to massively scale the parallelization of sparse applications,

this dissertation introduces a novel data-centric execution model, Dalorex,

where a program is split at pointer indirection into tasks so that they

access a confined address range and execute at the PU responsible for

it. Dalorex improves data locality by migrating the compute to the data.

To efficiently support this execution model, this dissertation proposes a

plethora of innovations, including a hardware task-scheduling unit and

support for asynchronous and opportunistic reduction trees, in addition
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to carefully considering the balance of network, compute, and memory

resources.

4. This data-centric architecture achieves 25× and 8.6× faster runtimes than

the top entries of the Graph500 ranking for 100-million-edge and billion-

edge graphs, respectively (without resorting to dataset partitioning, which

could yield even further gains). The Dalorex evaluation framework has

been open-sourced [131] and used as a comparison for subsequent research

on scalable architectures for memory-bound applications [32].

1.4 Thesis Outline

The rest of this dissertation is organized as follows. Chapter 2 first provides a primer

on hardware RTL module interfaces and FPV and then introduces the AutoSVA

framework that, given a hardware module, automatically generates a formal verifi-

cation testbench so that their interfaces can be exhaustively tested by FPV engines.

Chapter 3 starts by describing the data-supply challenges of sparse applications due to

their IMAs and discussing how existing latency-tolerance techniques are either not ef-

fective on manycore systems or require significant changes to their design to integrate.

Then, it presents the implementation of the MAPLE unit, which effectively mitigates

memory latency for in-order cores without requiring changes to the memory hierar-

chy or the cores. Chapter 4 describes the series of performance bottlenecks that arise

when latency is mitigated and how prior work has not fully addressed them. It then

presents a novel execution model and architecture design that effectively mitigates

these bottlenecks and scales up to a million processing elements. Lastly, Chapter 5

highlights the contributions of this thesis and concludes with a discussion of future

research directions.
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Chapter 2

Automatic Generation of Formal

Verification Testbenches for RTL

Module Interactions

The Cambrian explosion in the diversity of hardware caused by the end of Moore’s law

has exacerbated the challenges associated with RTL design and verification. Verifying

interactions between RTL modules is critical to guarantee forward progress in the

system. Formal Property Verification (FPV) is an effective method to exhaustively

verify these modules but has a steep learning curve and requires significant engineering

effort to apply. This chapter presents the framework introduced in this dissertation

that captures common design patterns across RTL interfaces in a higher-level model

and uses that to automatically generate FPV testbenches (FTs) that exhaustively

test RTL module interactions.

The work presented in this chapter is partly based on a publication in the Proceedings of the
58th ACM/IEEE Design and Automation Conference (DAC) [127]. Figures in this chapter are taken
or adapted from that publication.
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2.1 Introduction

Heterogeneous SoC design is a lengthy, expensive process that necessitates verifica-

tion at the early stages of development to avoid late bug fixes that would thwart

performance, area or security goals [148]. Different components of modern SoCs may

be developed in various contexts and exhibit complicated interactions [14, 72]. With

the numerous dependencies that occur between them, module interface verification is

necessary to prevent opportunities for livelock and deadlock.

As a running example used throughout this chapter, Figure 2.1 presents the RISC-

V 64-bit CVA6 Ariane core [123] and the P-mesh cache hierarchy of the OpenPiton

manycore SoC [13]. Among the many modules, the Load-Store Unit (LSU) of Ariane

is critical for the forward progress of the system, as it connects the core’s pipeline

with the cache hierarchy, including virtual memory translation.

Issue
stage

LSU

MMU

lsu_load

lsu_store

L1-I$

L1-D$
L1.5$ L2$

slice

 OpenPiton Tile

NoC

Ariane Core

Figure 2.1: Cache hierarchy of the OpenPiton+Ariane SoC [13]. Verifying these mod-
ule interactions is critical to guarantee forward progress in the system. For example, a
load request to the LSU (blue) that misses in the L1-D cache must receive a response
from the memory hierarchy to eventually return.

RTL Verification

Verification is a critical part of RTL development. Most frequently, it takes the form of

simulation, centered around tests generated by the developers to exercise the design.

When these tests are manually crafted, it not only consumes valuable engineering time

but also increases the risk of bugs in non-tested behavior. Such manual tests often

target intuitive scenarios–—regular operations or predictable edge cases–—which the
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designer might have already considered. Automating test generation, for instance,

by using constrained-random testing within the Universal Verification Methodology

(UVM) overcomes some of the limitations of manual testing.

UVM applies constraints to various system inputs, thereby facilitating the gener-

ation of random tests within these defined limits. The outputs are then compared

against a model of the expected behavior to find mismatched results. Additionally,

assertions can be added to the design to check for specific conditions and ease the

debugging process of intermediate states. However, in a complex system, constrained-

random testing may still only exercise a fraction of the total space of system behaviors,

especially when it comes to particular timing in the execution of operations, rather

than input values.

Formal Property Verification (FPV)

FPV is a complementary approach to simulation-based testing, where the inputs of

the Design-Under-Test (DUT) are treated as Boolean variables and the state space

is exhaustively explored. Unfortunately, setting up FPV testbenches (FTs) requires

a steep learning curve and significant engineering effort, i.e., writing appropriate

properties and specification constraints [152]. This upfront knowledge and effort

discourages hardware designers from using FPV.

Key Observations

With the goal of making FPV accessible to hardware designers, this work makes two

observations: (1) Although interactions between RTL modules may take place via

different mechanisms, a common design pattern across many of them is request and

response. Thus, my work advocates for automatic support of FPV for this pattern.

(2) Capturing the request/response interface signals in a higher-level model allows

for automated reasoning about RTL interfaces and their expected interactions. This
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work proposes a language centered around a transaction model. This model’s ap-

plicability is not limited to modules with explicit requests/responses; it can express

other interface mechanisms, e.g., pipeline stages that receive requests from a previous

stage and send them to the next stage.

The AutoSVA Approach

Given these observations, my work proposes AutoSVA, a framework to automatically

generate FTs for a given DUT. The designer of the DUT only needs to identify rele-

vant transactions and annotate them in the module interface using a simple language.

The framework then generates properties that verify the transactions are well-formed

and make forward-progress : they satisfy liveness (every request is eventually followed

by a response) and safety (expectations for some of the attributes of the response).

Through its automated reasoning, AutoSVA creates the necessary scaffolding code to

express these properties, alleviating the hardware designer from significant engineer-

ing effort and democratizing the use of FPV for verifying forward progress.

FTs generated with AutoSVA are then supplied to FPV engines to exhaustively

search for property violations. AutoSVA also generates vendor-specific commands to

drive the FPV engines, e.g., JasperGold [27] or the open-source SymbiYosys [183].

AutoSVA thereby provides a frontend for automatic FPV of an important subset of

the correctness problem—ensuring RTL modules’ interface expectations.

The rest of this chapter is organized as follows. §2.2 provides more background

on hardware RTL design and verification, including prior works using FPV for RTL

verification. §2.3 presents the AutoSVA language and the properties it generates. §2.4

demonstrates the effectiveness of AutoSVA on different classes of RTL components.

Finally, §2.5 concludes with a summary of the chapter.
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2.2 Background and Motivation

2.2.1 RTL Module Interfaces

Figure 2.1 shows a simplified view of the chain of events that can arise from a load

or store instruction that misses in the L1 cache and hits on the L2. (It gets more

complicated than that when considering virtual memory translation, which is later

shown in Figure 2.9). Each of these modules has an interface, that is nothing more

than a set of inputs and output signals connected to other modules. Despite these

signals being seen as individual wires by FPV engines (described in §2.2.3) or when

the chip is fabricated, at the RTL level there is a semantic structure in these interfaces.

input  wire                     lsu_valid_i, // New incoming request
input  fu_struct                fu_data_i,   // Request content (structure with trans_id et al.)
output wire                     lsu_ready_o, // Whether the LSU is ready to take a new request

output wire                     load_valid_o, // The load has finished, response can be provided
output wire [TRANS_ID_BITS-1:0] load_trans_id, // The transaction ID of the response 
output wire [63:0]              load_result,   // The data loaded

output wire                   dcache_req_valid, // Wants to request to the data cache
input  wire                   dcache_req_ready, // Whether the data cache can take the request
output dcache_req_struct      dcache_req,       // Structure including address, among others.

input  wire       dcache_resp_valid, // Data cache provides the response. Note that
input  dcache_resp_struct     dcache_resp_data, // if there is no ready, so the LSU must take it

Figure 2.2: Simplified view of the Ariane core’s LSU interface.

Figure 2.2 shows the input and output signals of the interface that the LSU offers

to the core’s pipeline, and the signals concerning the LSU’s interaction with the data

cache. Signals can be single wires, buses (with the width in brackets) or structures

(groups of wires and buses).

Universally, module interfaces have a valid signal that indicates the intention to

perform a transaction. Oftentimes, there is a ready or acknowledgment signal, that

indicates the willingness to accept a transaction. This is the case for transactions

for which backpressure is necessary to avoid dropping transactions, showcased in

Figure 2.2 with the lsu ready o signal. However, there are cases where the module
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cannot reject it, e.g., a response message from the memory hierarchy, showcased with

the dcache resp interface in Figure 2.2. This is the case for transactions that use

resources that have been previously reserved, e.g., at the time of the request.

In addition to valid and ready, there are other control signals like transaction IDs,

for when multiple inflight transactions are permitted. These signals are used to track

the progress of transactions and to match requests with responses.

There are several more common patterns found across RTL interfaces, such as:

• Stability: a request must remain stable (not dropped or its payload changed)

until it is acknowledged.

• Liveness: an acknowledged request must eventually have a response (with the

same ID, if applicable).

• Uniqueness: the same ID cannot be used concurrently for different transactions.

• Safety: the response must satisfy certain properties, e.g., to have had a prior

request. This is useful for capturing unrequested or duplicated responses.

The goal of AutoSVA is to automatically generate the properties and modeling

necessary to verify these common interaction patterns—an essential subset of the

correctness of RTL modules.

2.2.2 Verifying RTL with Formal Properties

Properties are the basis of assertion-based verification (ABV) [89, 144]. Although

more than one language exists for ABV [70], SystemVerilog Assertions (SVA) is the

most widely used language for RTL verification [31, 152].

The SVA Language

SVA is part of SystemVerilog, i.e., the IEEE-standardized version of Verilog and its

extensions [71], and it contains three main elements:
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• Expressions: Involving signals and Boolean operators, as in SystemVerilog.

• Sequences: Expressions connected with timing relationships, such as

eventually.

• Properties: Expressions and sequences together with additional operators,

such as the same-cycle (|->) or next-cycle (|=>) implication.

Properties can utilize one of three directives: assert, assume and cover.

• Assertions are the properties to verify to hold for every possible execution.

They may involve internal signals or outputs of the DUT.

• Assumptions have different meanings based on how input stimuli are gener-

ated. In RTL simulation, inputs are driven either by manual or random tests

and thus assume has the same meaning as assert, i.e., they check that the prop-

erty holds. Conversely, in FPV, assume is treated as a constraint that prunes

the state-space exploration performance by the FPV engine. Assumptions typ-

ically involve inputs of the module being verified, the DUT.

• Cover points are used to show that a condition ever occurs. They are often

used as a witness to preconditions for implication operations, to ensure that the

implication is not vacuous. They can involve inputs or outputs of the module

being verified.

Despite the expressiveness of SVA, with sequences and other helper functions like

$past() and $stable() that provide or reason about the previous state of a signal,

additional Verilog code is necessary to track the progress of transactions and to match

requests with responses.

Required Code for Tracking Transactions

Figure 2.3 presents a subset of the scaffolding code and properties that are necessary to

verify forward progress for the load interface of Ariane’s LSU (depicted in Figure 2.2).
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reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
 if(!rst_ni) //counting transaction
   lsu_load_sampled <= '0;
 end else if (lsu_load_set || lsu_load_response)
   lsu_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response
end
co__lsu_request_happens: cover property (lsu_load_sampled > 0);
// Assume that a transaction is stable until acknowledged
am__lsu_load_stability: assume property (lsu_req_val && !lsu_req_rdy |=>
                           $stable({lsu_req_stable}) );
// Assert that if a valid transaction then eventually is ack'ed or dropped
as__lsu_load_hsk_or_drop: assert property (lsu_req_val |->
                            s_eventually(!lsu_req_val || lsu_req_rdy));
//Assert that every request has response, and every response had a request
as__lsu_load_eventual_response: assert property (lsu_load_set |->
                            s_eventually(lsu_load_response)));
as__lsu_load_had_a_request: assert property (lsu_load_response |->
                            lsu_load_set || lsu_load_sampled > 0);

Figure 2.3: Subset of the properties and additional code necessary to verify forward
progress for the load interface of Ariane’s LSU.

The lsu load sampled register tracks that a request has been made so that the

lsu load had a request assertion can check that no response is received without a

prior request. Complementarily, lsu load eventual response checks that any load

request eventually receives a response with the same transaction ID.

Moreover, Figure 2.3 also shows the usage of symbolic variables (symb lsu transid),

which are an efficient way to assert properties about a range of transaction IDs with-

out having to write a property for each one. This is a powerful way to write assertions

when those assertions are evaluated with FPV engines.

AutoSVA automatically generates efficient properties making use of symbolic vari-

ables, in addition to the necessary transaction-tracking code. This is a significant
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advantage over writing these manually, which is a time-consuming and error-prone

task, even for experienced users.

Modeling the Behavior outside the DUT

Another challenge of using FPV is that all input wires are treated as Boolean vari-

ables, for which all combinations are explored unless explicitly constrained. It is the

responsibility of the verification engineer to write assumptions that constrain the state

space to avoid illegal combinations of inputs for a given module. This is showcased

in Figure 2.3 with the lsu load stability assumption, which forces the payload of

a load request to remain stable until it is acknowledged.

Writing assumptions is complicated because it is hard to reason about the down-

stream effects of an assumption, i.e., how it will affect the state-space exploration.

The FPV only examines the unconstrained space, i.e., the unpruned branches of the

exploration tree. It is not always intuitive what is considered an illegal or unfeasible

input combination of values or timing, and it depends on where and how the module is

integrated. For example, the same cache integrated into different memory hierarchies

may have different assumptions about the cadence of requests and responses.

The Need for Automated Property Generation

The underlying dynamics of FPV and SVA make it difficult to intuitively understand

the consequences of various properties expressed, such as the behavior of symbolic

variables. Moreover, subtle mistakes in assumptions, e.g., using the |−> implication

symbol in the lsu stability assumption of Figure 2.2 can over-constrain the state

space and end up proving vacuity.

Manually inserting assertions can be cumbersome and error-prone for hardware

designers (usually unfamiliar with FPV), and particularly frustrating when CEXs ap-
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pear due to illegal inputs of not yet modeled behavior [39]. Thus, AutoSVA is created

to automatically model and express the expected behavior for module transactions.

The motivation of AutoSVA is to make FPV more accessible to hardware design-

ers, who could employ it for Test-Driven-Development (TDD), where CEXs help to

refine the design [167]. This can be applied at the early stages of RTL development

by applying it to individual modules, and later to the integration of these modules.

2.2.3 Formal Verification Engines

An FT could use a variety of solver engines [28, 169, 183] to exhaustively search for

property violations. Although the formal verification engines from the major EDA

vendors (like the one used in the evaluation section §2.4) are proprietary, they are

based on formal methods that are well understood, like model checking and linear

temporal logic (LTL).

LTL extends propositional logic with temporal operators, to express properties

about the behavior of a system over time. The theory behind model checking is to

exhaustively search for property violations by exploring all possible states of a system

to determine the validity of an LTL formula [21]. Even for finite-state systems, the

number of states can be prohibitively large. The model state size grows exponentially

with the number of state variables; this state explosion is the main difficulty in model

checking [35]. The problem is intractable in the worst case.

The appearance of bounded model checking (BMC) was a significant breakthrough

and has come to be the predominant method used by industrial model checkers to-

day [35]. The BMC algorithm produces a propositional formula by unwinding the

LTL formula to a number of transitions k. This reduces the problem of model check-

ing to an instance of propositional satisfiability (SAT), for which powerful decision

procedures exist [21, 155].
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Bounded Proofs and Completeness Thresholds

A bounded proof of a property for k cycles means that the property holds for execu-

tions of less than or equal to k cycles; longer executions may still result in a property

violation. To prove the property for unbounded executions, k must reach a complete-

ness threshold. A naive threshold is the number of states in the model; a tighter

one is the length of the shortest path between the two states furthest apart in the

model [34]. In practice, reaching this completeness threshold is not always possible;

the checker may run out of time or memory, or the threshold itself may be hard to

compute.

Provided that the formalization is accurate and not overconstrained, proof of a

property is considered a golden standard of correctness. However, bounded proofs

still hold much value, as they can provide a degree of confidence if the bound is deep

enough to exercise the critical paths of the design.

2.2.4 Methodologies for RTL Verification using FPV

Figure 2.4 compares the AutoSVA methodology (bottom) to the methodology most

commonly used in the hardware-design industry (top) [152]. Based on an RTL mod-

ule, the verification engineer writes properties concerning logic and flip-flops based

on the specification. The challenge becomes apparent when the specification (if any)

is not at the level of detail required to write these properties, or when the RTL is

in continuous development, as is often the case in academia and open-source hard-

ware [123]. For example, based on industry experience, it may take weeks of writing

properties to cover a significant portion of the design, and it is not uncommon to

have to go back and forth with the designer to refine the properties.

Formal properties written in SVA are placed on a property file, which is then

connected with the RTL design through a binding file and then provided to the FPV

engine. Based on the report from the FPV engine, the CEXs of the failing properties
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Figure 2.4: AutoSVA methodology (bottom) compared to industry-standard FPV
methodology (top) [152].

are inspected to determine whether they are RTL bugs or if the properties need to

be refined. Once again, this process requires continuous communication between the

verification engineer and the designer, which continues until there are no more CEXs.

The goal of AutoSVA is not to replace the current best practices for FPV but

to apply FPV for those modules being developed solely with simulation-based test-

ing, which is still the prevalent practice, due to the intricacies of FPV. When we

do not have a verification engineer at hand, having the designer apply the AutoSVA

methodology is clearly better than not doing any formal verification at all. In addi-

tion, verification engineers can use AutoSVA to quickly set up an FT that checks a

considerable portion of the design, and then manually add more properties to cover

the remaining RTL behavior.

Prior work has also tried to ease the use of FPV by automating parts of the

process: ILAng [68] is a modeling and verification platform where Instruction-Level

Abstraction (ILA) is used as the formal model for hardware components. ILAng
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provides a programming interface for constructing ILA models and performing equiv-

alence checking between different ILA models and an RTL implementation. While

ILAng is effective at verifying RTL designs, it requires significant effort to construct

the ILA model, which not all hardware designers may be willing to invest.

RTLCheck [103] verifies the RTL of CPU pipelines for memory consistency by syn-

thesizing SVA from axiomatic specifications. However, RTLCheck is limited to verify-

ing memory consistency models and does not cover the liveness and safety properties

of module interfaces, which are the focus of AutoSVA.

2.3 The AutoSVA Framework

AutoSVA facilitates FPV for hardware designers and makes TDD practical by au-

tomating a key component of the FPV problem: the liveness and safety of module

interfaces. Instead of aiming to verify functional correctness, which is implementation-

dependent, AutoSVA focuses on verifying that modules interact through well-formed

transactions and make forward progress.

Figure 2.5 presents an example of the simple usage of AutoSVA’s language. The

LSU designer only needs to annotate the RTL interface using AutoSVA’s language

to generate an FT. The first line describes a relation between a request (italic blue)

and a response (italic green) interface; the remaining lines map RTL interface signals

to transaction attributes (bold). These annotations unleash automated reasoning to

generate the modeling and properties (previously shown in Figure 2.3) surrounding

the liveness and safety of the control logic of RTL module interactions. The set of

properties generated by AutoSVA is based on the different transaction attributes that

are annotated (see §2.3.2).

Working at the interface level allows AutoSVA to leverage common RTL interface

abstractions and avoid the complexity of specific module implementations. By cap-
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/*AUTOSVA
lsu_load: lsu_req -in> lsu_res
lsu_req_val = lsu_valid_i && fu_data_i.fu == LOAD
lsu_req_rdy = lsu_ready_o
[TRANS_ID_BITS-1:0] lsu_req_transid = fu_data_i.trans_id
[CTRL_BITS-1:0] lsu_req_stable = {fu_data_i.trans_id,fu_data_i.fu}
lsu_res_val = load_valid_o
[TRANS_ID_BITS-1:0] lsu_res_transid = load_trans_id_o
*/

Figure 2.5: Example using the AutoSVA language to annotate the LSU interface of
Ariane.

turing a common design pattern, AutoSVA can automatically generate useful FTs

We consider an FT useful when it (1) has sufficient module interface modeling to

avoid spurious CEXs and capture relevant CEXs which leads to uncovering bugs, and

(2) does not miss legal scenarios due to over-constraining assumptions.
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Figure 2.6: Overview of the verification process using AutoSVA.

Figure 2.6 presents an overview of the process of verifying an RTL module using

AutoSVA. The tool takes as input the interface declaration section of the RTL module

acting as the DUT. The interfaces should be annotated using AutoSVA’s language for
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interface abstraction (defined in §2.3.1). Once the abstraction is defined for a DUT,

AutoSVA generates the FT that includes a property file describing the properties to

verify, all necessary modeling about RTL blocks external to the DUT, and a binding

file to connect the properties to signals in the DUT.

EDA vendors commercialize suites of formal engines [28] within their FPV tools,

which are referred to as FPV backends for the rest of this chapter. Based on the FPV

backend to target, AutoSVA generates configuration and command files. AutoSVA

currently generates these files for JasperGold [26, 27] and SymbiYosys [183]. Once

the properties, binding and vendor-specific files are generated, AutoSVA invokes the

FPV backend to start the verification process. This returns either property proofs or

CEXs that highlight possible bugs in the RTL. A hardware designer can then quickly

set up an FT and locate bugs by using AutoSVA as a frontend for FPV tools.

2.3.1 The AutoSVA Interface-Annotation Language

AutoSVA’s transaction abstraction involves two events connected with an implication

relation. From the DUT’s perspective, there are two types of transactions:

• Incoming transactions describe when a DUT receives a request and is responsible

for eventually triggering a well-formed response or another request, and

• Outgoing transactions describe when a DUT triggers a request that eventually

must receive a response.

The two events in a transaction are associated with RTL interfaces, which are

the connection points of RTL modules. For example, incoming transactions can map

a cache lookup interface to define a liveness condition that the cache lookup should

eventually have a response, and to define a safety condition that this response must

satisfy certain properties, e.g., maintain the same transaction ID the request had.
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AutoSVA maps transaction events to interfaces through annotations expressed in

its language. These annotations are written as Verilog comments on the interface

declaration section of an RTL file to identify module interfaces that participate in

transactions. To distinguish these annotations from regular code comments, AutoSVA

requires annotations to be preceded with an AUTOSVA macro or be contained within

a multi-line comment region that starts with it.

TRANSACTION ::= TNAME: RELATION ATTRIB

RELATION ::= P −in> Q | P −out> Q

ATTRIB ::= ATTRIB, ATTRIB | SIG = ASSIGN | input SIG | output SIG

SIG ::= [STR:0] FIELD | STR FIELD

FIELD ::= P SUFFIX | Q SUFFIX

SUFFIX ::= val | ack | transid | transid unique | active | stable | data

TNAME, P, Q ::= STR

Table 2.1: The AutoSVA language. Constants are written in lowercase and syntax in
uppercase. STR and ASSIGN are Verilog’s syntax for strings and assignments.

Table 2.1 presents the formalization of the AutoSVA language. P and Q repre-

sent two interfaces that have a temporal implication relation, which is either incoming

“−in>” or outgoing “−out>” from the DUT’s perspective, and share a transaction

named TNAME. Multiple transactions can be defined with unique names. ATTRIB defi-

nitions map interface signals to transaction attributes. Each definition must be placed

on a separate line in the RTL (i.e., a distinct line number) and must be prefixed with

the interface name.

Implicit definitions are native interface signal declarations (preceded by in-

put/output signals) that are already defined in the RTL design. If they follow the

FIELD naming convention, AutoSVA can automatically identify these fields without

annotations, which is especially useful for early-stage RTL verification. AutoSVA’s

parser ignores signal declarations that do not match P or Q prefixes and the lan-

guage’s legal suffixes.
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Explicit definitions define new signals to extract transaction attributes that

are not explicitly defined with interface signals. These are useful for renaming signals

that do not match AutoSVA’s language, extracting fields within structs, and defining

attributes based on multiple interface signals. Figure 2.8 presents examples of these

definitions for a few modules.

2.3.2 Property Generation Based on Transaction Attributes

Attribute Properties generated

val∗ If P is valid, then eventually Q will be valid and
for each Q valid, there is a P valid

ack∗ If P is valid, eventually P is ack’ed or
P is dropped (if its stable signal is not defined)

stable If P is valid and not ack’ed, then it is stable next cycle

active This signal is asserted while transaction is ongoing

transid∗ Each Q will have the same transaction ID as P

transid unique There can only be 1 ongoing transaction per ID

data∗ Each Q will have the same data as P

Table 2.2: Properties generated for each transaction attribute. Attributes marked
with * generate properties that are asserted when the transaction is incoming and
assumed when outgoing.

AutoSVA generates properties based on how transactions are defined, as more

attributes indicate more characteristics to verify. Table 2.2 presents the properties

that result from the presence of each attribute. AutoSVA does not require all possible

transaction attributes to be defined in order to generate meaningful properties. For

example, an implication relation between P and Q with just the val attribute defined

indicates the two interfaces communicate and thus a liveness property is generated

for the transaction. The absence of an ack signal indicates the request/response is

always accepted.
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Some of the behavior captured in Table 2.2 cannot be expressed within proper-

ties alone. For example, verifying that every response followed a previous request

requires counting the number of ongoing transactions. For that, AutoSVA generates

the necessary auxiliary Verilog code, as shown with registers in Figure 2.3.

The transid attribute allows tracking transactions to reason about other at-

tributes, such as data, which is used to verify data integrity. This is important for

interface fields that are immutable between P and Q, e.g., data in a queue or address

in a memory request.

Attributes marked with * at Table 2.2 generate properties that are asserted when

the transaction is incoming and assumed when outgoing. E.g., for the val attribute,

the word eventually indicates liveness when the DUT is expected to respond and

fairness when it is waiting for a response. For attributes stable and transid unique,

the opposite holds; properties are assumed on incoming and asserted on outgoing

transactions. The attribute active is always asserted when defined.

Submodule Properties

When the DUT has a submodule whose inputs are driven by actual logic, it is worth-

while to ensure that assumptions about these inputs hold. AutoSVA assumptions can

be converted into assertions by changing the value of the ASSERT INPUTS parameter.

Submodule properties can be linked to the parent’s FT through AutoSVA’s param-

eters: -AM includes the properties when the submodule was the DUT (assumptions

over outgoing requests) and -AS converts all assumptions into assertions.

End-to-End Properties

SVA allows writing properties that use internal RTL logic (not visible at the interface).

While this is often necessary for full functional verification, it causes properties to

depend on RTL implementation details. To overcome this, AutoSVA writes end-to-
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end properties that solely describe interface signals, but cover the whole path from

input to output interface. End-to-end properties are implementation-agnostic and

thus can be automatically generated pre-RTL, making AutoSVA a great framework

for Test-Driven-Development (TDD).

Property Reuse

In addition to FPV, AutoSVA property files can be utilized in a simulation test-

bench to ensure that assumptions hold during system-level testing. Although many

RTL simulation tools do not support liveness properties, all control-safety properties

and X-propagation assertions can be checked during simulation. AutoSVA generates

X-propagation assertions, which check that when the val signal of an interface is

asserted, none of the other attributes have value X (concurrently 0 and 1). Because

formal tools do not consider X’s and instead assign arbitrary values of 0 or 1, these

assertions are only checked during simulation (under a XPROP macro).

2.3.3 AutoSVA Implementation and Process Steps

AutoSVA is implemented in Python using only standard libraries to provide porta-

bility and ease of use. AutoSVA generates FTs in under a second. Figure 2.7 details

the five steps of this process.

Step 1. Parser

AutoSVA parses the signal declaration section of the annotated RTL file to identify

global parameters, e.g., cache associativity or queue size, annotations in the AutoSVA

language, and interface input/output signals. Based on the annotations, the parser

identifies which pairs of interfaces participate in transactions and creates a mapping

from interface pairs (P and Q) to a list of their attribute definitions.
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Figure 2.7: Steps of the AutoSVA framework. It receives an annotated RTL file and
the FPV backend to target, and it outputs an FT that is ready to be run.

Step 2. Transaction Builder

AutoSVA builds transaction objects based on interface fields and implication relations

identified by the parser. During this process, AutoSVA can detect syntax errors in

annotations, e.g., when transid or data fields are defined in only one of the interfaces

of a transaction, or with mismatched data widths.

Step 3. Signal Generator

Before generating properties based on transactions, AutoSVA generates auxiliary sig-

nals, such as symbolics, which are unassigned variables used to build assertions. Sym-

bolic variables are unconstrained and allow FPV tools to explore all their possible

values in a single assertion. For example, a single assertion can be used to reason

about all lines of a cache if a symbolic signal is used to index the cacheline. AutoSVA

also generates handshake signals (as conjunctions of val and ack) to indicate that a

request or response takes place.
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Step 4. Property Generator

AutoSVA creates properties based on the transaction attributes and type (incoming

or outgoing). These properties can verify liveness and other aspects that ensure

that transaction is well formed. Those aspects include uniqueness, stability and data

integrity, as aforementioned in §2.3.2. Moreover, X-propagation assertions are also

automatically generated for all interfaces annotated to ensure that the val signal is

not asserted when other attributes have undefined behavior.

SVA properties are explicitly written in the property file. AutoSVA does not

use SVA macros or checkers to provide better readability in case the user wants to

explore the properties or a verification engineer wants to extend the FT for functional

correctness. The properties are tool-agnostic, and written to be most efficient for FPV

tools to run, e.g., using symbolic indexes for transid tracking.

Step 5. FPV Backend Setup

Once the SVA properties are generated, AutoSVA links them to the FPV backend

of choice. Furthermore, AutoSVA supports linking the FTs of submodules of the

DUT, that had already been generated, by using script parameters during AutoSVA’s

invocation.

2.4 Evaluation

2.4.1 Methodology

We use the following metrics to evaluate AutoSVA: (1) its ability to find bugs given the

interface expectations, both known issues and new ones; (2) the speed of bug discovery,

based on tool runtime and trace length; (3) amount of engineering effort, measured

in time spent writing the transaction annotations; and (4) bug-fix confidence, whether

the bug-fix leads to a proof or new CEX.
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These metrics are studied in mature, taped-out, open-source hardware projects:

64-bit RISC-V Ariane Core [189] and the OpenPiton manycore framework [13]. A

total of seven RTL modules—selected based on their criticality for forward progress—

are tested using AutoSVA. These modules are listed in Table 2.3 in the results section,

along with the outcome of formally verifying them using FTs generated by AutoSVA.

These outcomes consist of proofs and bugs, demonstrating that AutoSVA is useful

and effective at generating properties and models to verify forward progress.

AutoSVA is also evaluated for early-stage verification by applying it during the

development of the MAPLE memory-access engine, which connects to OpenPiton’s

P-mesh NoC by reusing its encode/decoder buffers. MAPLE is a vital part of the

DECADES chip [55] and is presented in this dissertation in Chapter 3.

The evaluations are performed using JasperGold 2015.12 as the FPV backend,

which is a widely used tool in industry and academia. Additionally, the properties

are tested using OpenPiton’s simulation-based testbench using VCS-MX 2018.09 to

demonstrate that the properties are compatible with system-level simulation.

2.4.2 Applying AutoSVA to RTL Modules

A key component of AutoSVA is its transaction abstraction which is broad enough to

apply to most RTL interface styles and specific enough to generate useful properties.

Figure 2.8 presents a few examples of how AutoSVA can be applied to a wide range

of interfaces based on common possible scenarios. It shows annotations for the page

table walker (PTW) and translation lookaside buffer (TLB) of Ariane, and the NoC

buffer of OpenPiton.

Single Outstanding Transaction

When a module can only have one outstanding transaction, this behavior is modeled

by not defining the transid attribute. This is the case for the ptw dcache and
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ptw_dcache: ptw_req −out> dcache_res
ptw_req_val = req_port_o.data_req
ptw_req_ack = req_port_i.data_gnt
dcache_res_val = req_port_i.data_rvalid
dtlb_ptw: dtlb −in> ptw_update
dtlb_active = ptw_active_o
dtlb_val = enable_translation & dtlb_access_i & dtlb_hit_i
dtlb_ack = !ptw_active_o
[riscv::VLEN-1:0] dtlb_stable = dtlb_vaddr_i
[riscv::VLEN-1:0] dtlb_data = dtlb_vaddr_i
ptw_update_val = ptw_update_o.valid | ptw_error_o
[riscv::VLEN-1:0] ptw_update_data = update_vaddr_o
maple_noc: noc1buffer_req −in> noc1buffer_enc
[MSHR_ID:0] noc1buffer_req_transid = noc1buffer_req_mshrid
[MSHR ID:0] noc1buffer_enc_transid = noc1buffer_enc_mshrid

Figure 2.8: AutoSVA annotations to define PTW’s outgoing transaction to the
data cache (ptw dcache) and incoming transaction from the DTLB-miss interface
(dtlb ptw), and OpenPiton buffer’s incoming transaction from MAPLE towards
NoC1 encoder (val and ack attributes match interface names).

dtlb ptw transactions in Figure 2.8. This principle works for both incoming and

outgoing transactions.

Multiple Outstanding Transactions

When a module can have several transactions in flight concurrently, the transid

attribute is used to annotate the transaction ID of the interface, as shown for the

mshrid field of the noc1buffer req interface in Figure 2.8. Tracking requests allow

AutoSVA reasoning about the integrity of transid and data fields. If requests are

not tracked, AutoSVA still checks that there are no more responses than requests and

that every transaction eventually finishes.

Interfaces without Explicit ack Signal

When an interface does not have an ack signal but the module cannot always accept

new requests, AutoSVA allows defining ack by reasoning about other signals. In the
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case of dtlb ptw, the ack field is defined based on the active signal, which indicates

when the PTW is busy.

2.4.3 Results

Table 2.3 presents the seven Ariane and OpenPiton modules that were tested and a

brief summary of the results. For these, AutoSVA generated a total of 236 unique

properties and the necessary scaffolding code to support them, based on 110 lines

of code for annotations. The biggest advantage is that these properties and support

code are generated without requiring knowledge of formal verification or SVA.

RTL Module Result

A1. Page Table Walker (PTW) All liveness/safety properties reach proof

A2. Trans. Look. Buffer (TLB) All liveness/safety properties reach proof

A3. Memory Mgmt. Unit (MMU) Bug found and fixed, then, all reach proof

A4. Load-Store Unit (LSU) Hit known bug (issue #538)

A5. L1-I cache (write-back) Hit known bug (issue #474)

O1. NoC Buffer Bug found and fixed, then, all reach proof

O2. L1.5 cache (private) NoC Buffer proof, other properties have CEXs

Table 2.3: RTL modules tested with AutoSVA. Ariane modules are indicated with
A, and OpenPiton with O. The issue numbers refer to the upstream Ariane reposi-
tory [123].

First, FTs of Ariane’s PTW and TLB (A1 and A2 in Table 2.3) resulted in 100%

of the properties being proven at the unit level after 30 minutes of human effort to

define the correct transactions and under a minute of formal tool runtime. Next, the

FT of the memory management unit (MMU) was created after 10 minutes of adding

a new transaction and reusing the properties of its submodules’ FTs. These results

demonstrate that AutoSVA is quick to use and effective at verifying forward progress

in control-critical modules.
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Figure 2.9 shows the hierarchy of the Ariane modules tested. The MMU FT (blue)

checks that every request from the LSU eventually receives a response, and that no

response occurs without a prior request.

                     Ariane's Load-Store-Unit (LSU)         
.
.
.
.

.

LU

SU

Black-
boxed
Issue
stage

MMU

.
.dtlb_ptw

DTLB ITLBPTW

    

L1-I$

L1-D$ptw_dcache

lsu_load

lsu_store

Figure 2.9: Modules within Ariane’s LSU that were tested using AutoSVA.

Before uncovering a real bug in the MMU, AutoSVA found an interesting CEX:

an ITLB miss was never filled because the PTW was always busy with DTLB misses.

Since the trace was quick (<1s) and short (<4 cycles), it was straightforward to

identify the root cause, which is the fact that the DTLB lookups have static priority

over ITLB ones. This fairness problem cannot happen in practice since one instruction

cannot do many DTLB lookups. Since the DTLB and ITLB lookups are different

transactions, AutoSVA does not generate assumptions about their relationship. A

manual assumption is then added to remove this case so that there is no more than

one DTLB lookup per ITLB access.

Bug 1. Ghost Response on MMU

The next CEX uncovered a bug that was triggered when the MMU received a mis-

aligned request from the LSU. The MMU responds immediately with a bad alignment

response, but the DTLB still misses and the PTW is activated (bad behavior). In the

case of a page fault, the MMU generates a second ghost response to the LSU, raising

an exception. This bug was found by JasperGold in less than a second, producing

a 5-cycle trace that allowed us to quickly identify the problem and produce a bug

fix (masking the PTW request with the misaligned signal) with high confidence, as
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the formal tool found proof in few seconds for the previously failing assertion. In 5

minutes, the MMU FT proof rate was 100%. The Ariane maintainers confirmed the

bug and the fix.

Hitting Known Bugs

The LSU FT hit (in a second of FPV engine runtime) a bug that was recently dis-

covered on a long FPGA run: an ongoing load hits an exception caused by a later

load. The Ariane maintainers welcomed an FT where they could validate that the

fix solves the problem and does not break anything else. Similarly, the L1-I cache FT

was able to hit a reported bug. (These two FTs correspond to entries A4 and A5 in

Table 2.3.)

Bug 2. Deadlock in NoC Buffer

AutoSVA found a deadlock bug in an under-developed part of MAPLE that connects

to the OpenPiton’s P-mesh NoC (O1 in Table 2.3). Since the interfaces mostly

matched the AutoSVA language, the FT was generated with just 3 lines of code

(shown in maple noc at Figure 2.8). The first CEX to the liveness assertion revealed

a bug that arises from the reuse of the NoC buffer from the L1.5 cache for MAPLE.

The buffer assumes that the input does not drive more requests than the number of

buffer entries, which is violated in MAPLE. After fixing the bug (adding a not-full

condition to the ack signal), the formal tool resulted in a proof.

Lastly, the FT of OpenPiton’s L1.5 cache (O2 in Table 2.3) showed that the

condition added to the NoC buffer did not break the properties for its buffer instance.

Other properties, e.g., that every cache miss is eventually filled, showed CEXs due

to under-constraints in the message types. AutoSVA provides the FT foundation

that the L1.5 cache designer can refine with assumptions to remove spurious CEXs.
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The FT can also be extended with more assertions to achieve complete functional

verification.

2.5 Chapter Summary

This chapter presents AutoSVA, a tool that lowers the barrier of entry for formal

verification of RTL. Based on annotations made in the signal declaration section of

an RTL module, AutoSVA generates liveness and safety properties about control logic

to verify forward progress. Thus, hardware designers can verify their designs at the

unit level without requiring FPV expertise and with the minimal effort of writing

RTL module interface annotations. This pays off quickly, as performing FPV early

can save significant debugging time during the system-level simulation and increase

designer confidence that the system will not hang.

This chapter has demonstrated the effectiveness of AutoSVA with an evaluation

of widely used open-source hardware projects. The FPV testbenches generated by

AutoSVA have uncovered bugs and provided proof of seven control-critical RTL mod-

ules. Some of these are included in the open-source repository of this work as tutorial

examples [124].
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Chapter 3

Scalable Latency-tolerance for

Off-the-shelf CPUs in Manycore

SoCs

Motivated by the rise in diversity in hardware components in modern SoCs, the

previous chapter presented a framework that facilitates the verification of module

interactions. Keeping the verification process in mind and aiming to make the inte-

gration of new components easier, this chapter presents a hardware module that offers

hardware support for memory latency-tolerance techniques like prefetching without

requiring modification of CPU cores.

3.1 Introduction

From the perspective of Amdahl’s Law, as specialized accelerators speed up compu-

tation, memory operations that supply data represent a bigger portion of the run-

The work presented in this chapter is based on a publication in the Proceedings of the
ACM/IEEE 49th International Symposium on Computer Architecture (ISCA) [126]. Thus, this
chapter discusses collaborative work between the author of this dissertation and the coauthors
of [126]. Figures in this chapter are taken or adapted from that publication.
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time [164]. Workloads with cache-unfriendly irregular memory access patterns are

particularly bottlenecked, such as those in the domains of graph analytics and sparse

linear algebra. Their irregularity arises from indirect memory accesses (IMAs) that

require many off-chip, long-latency accesses to DRAM. Software optimizations to

reduce memory latency often require increased code complexity and reduced porta-

bility, and can incur overheads that limit performance gains [93]. Thus, hardware

innovations are necessary.

Limitations of Current Solutions

Amenable for / Unmodified Unmodified In-order Leveraging
Proposed Technique Cores ISA Cores Program Knowledge

Hardware DAE [58, 104, 157] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

DeSC/MTDCAE[61, 166] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

Software Pre-execution [101] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Triggered instructions[140] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

Slipstream [161, 165] ✗✗✗ ✓✓✓ ✓✓✓ ✗✗✗

Hardware Prefetching[16] ✗✗✗ ✓✓✓ ✓✓✓ ✗✗✗

IMP, Graph Prefetch[5, 188] ✗✗✗ ✓✓✓ ✓✓✓ ✗✗✗

Programmable Prefetcher [7] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

DSWP [147] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Outrider [38] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Clairvoyance [176] ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗

SWOOP [177] ✗✗✗ ✓✓✓ ✓✓✓ ✓✓✓

MAD [66] ✗✗✗ ✓✓✓ ✓✓✓ ✓✓✓

Pipette [118] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Prodigy [170] ✗✗✗ ✓✓✓ ✓✓✓ ✓✓✓

MAPLE ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Table 3.1: Classification of the hardware-assisted prior work on IMA latency miti-
gation, based on the key features that make the adoption of a hardware technique
practical for SoCs.

Table 3.1 shows much of the 40 years of prior work in latency mitigation of IMAs.

One might think that these hardware innovations are easy to incorporate into existing

CPU designs, but that is often not the case due to complex core or cache modifica-
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tions [16, 118, 165, 170], the need for new ISA instructions [38, 140, 147, 166, 177], or

excessive area overheads per core [61, 188]. Moreover, deep microarchitecture changes

are hard to make in practice because of the verification burden, and thus, off-the-shelf

CPU cores are preferred for ease of SoC integration.

These observations are not abstract; as mentioned in Chapter 1, this exploration

into the prior work in latency tolerance started with the goal of fabricating the

DECADES chip, to efficiently process sparse algebra and graph analytic workloads.

Prior work has leveraged SMT and beefy out-of-order (OoO) to hoist accesses and

thus mitigate the latency of IMAs [101, 147, 176]. However, DECADES chooses to

use many slim in-order cores instead of a few OoO cores, because the latter are gen-

erally not effective for irregular memory accesses without additional specialization.

Moreover, in-order cores with specialized hardware to handle irregular accesses offer

better performance density for the graph and sparse application domain [105, 170].

Previously proposed latency tolerance techniques fall short of analyzing trade-

offs that arise from manycore integration or silicon implementations, such as precise

per-core area overheads or engineering effort needed to verify such core modifications.

This Work’s Contribution

This chapter introduces a Memory Access Parallel-Load Engine (MAPLE), the first

taped-out NoC-connected hardware that mitigates memory latency and improves per-

formance without requiring CPU core or memory hierarchy modifications. This work

implements, verifies, and evaluates MAPLE’s RTL, integrated into the OpenPiton [15]

manycore framework through the NoC in a scalable, tiled, manner. Figure 3.1 high-

lights two scenarios that leverage MAPLE’s specialization for memory latency toler-

ance and timely supply of data to processing units. MAPLE supports decoupling and

prefetching techniques through its API. These are not custom ISA instructions but
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regular load and store instructions from user mode to read and write to a MAPLE

instance (details in §3.3).

Core 2 . . .

MAPLE  

Main Memory (DRAM)

Core 3 
MAPLE 

 Last Level Cache (LLC)

Core 1
Fetch  

&A[B[i]]

Consume

Consume
Produce 

Figure 3.1: MAPLE is an area-efficient alternative to fetch irregular memory pat-
terns. Each MAPLE can supply data for up to 8 cores in parallel. For clarity, two
scenarios of cores using MAPLE separately are depicted. The arrows are MAPLE
API operations (off-the-shelf cores can target MAPLE using memory-mapped loads
and stores). In decoupling mode, Core 1 runs ahead of Core 2 producing pointers
(red arrow) to irregular memory locations for MAPLE to fetch and store in one of
its scratchpad hardware queues; Core 2 is consuming already fetched data from a
MAPLE queue; For prefetching, Core 3 is using MAPLE as a prefetching engine,
scheduling in advance a series of indirect accesses of the shape A[B[i]]; Core 3 can thus
fetch cache-averse patterns (red) using MAPLE, and fetch regular patterns (green)
using the memory hierarchy.

MAPLE offers a flexible programming model that extends far beyond scheduling

a task to an engine that subsequently raises an interrupt upon completion (e.g.,

DMA engines). Utilizing MAPLE’s hardware queues enables decoupling of data-

produce and compute operations for latency tolerance. Previously, this fine-grained

supply capability has only been supported through new ISA instructions and deep

microarchitectural changes [61, 157], which made it difficult to adopt in practice.

Off-the-shelf cores can produce (store) data into MAPLE, and consume (load)

from it as if they were interacting with a software queue, but with the advantage that

MAPLE can transform the data in between. Figure 3.1 shows how MAPLE can be
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invoked to fetch irregular or IMAs and place the data into its FIFO queues for cores

or accelerators to consume from them and perform dense computation.

MAPLE’s scratchpad offers hardware queues implemented as circular FIFOs.

MAPLE performs hundreds of long-latency IMAs in parallel, utilizing many slots

in the FIFO queues, whose indices are used to reorder memory responses. This pro-

vides memory level parallelism (MLP) without the area overhead of IMA-dedicated

hardware on every core.

The key novelty is the exploitation of the software optimizations of decoupling

and prefetching, while leveraging specialized memory-access hardware, without

modifying the core, ISA, or memory hierarchy, demonstrated with a real im-

plementation. This work enables MLP in systems with area-efficient cores (e.g., with

small instruction windows or in-order execution), where software-only approaches

are ineffective. MAPLE provides hardware assistance through an API and does not

require modifications of CPU cores. The API and hardware-software co-design are

compliant with Virtual Memory (VM) and SMP Linux, and support scaling the num-

ber of MAPLE instances, as done in the DECADES chip tapeout. Each MAPLE is

individually protected through core-level, standard, virtual memory protection.

Unlike much of the prior work shown in Table 3.1, MAPLE can be adopted in

practice with little engineering effort, which is demonstrated via a tiled-based integra-

tion in the DECADES chip. The effectiveness of MAPLE is evaluated with prominent

latency-bound workloads first on an FPGA prototype and then on the DECADES

chip.

Chapter Outline

The rest of this chapter is organized as follows. §3.2 highlights where prior works on

latency mitigation fall short in providing an easy-to-adopt and versatile solution for

manycore SoCs. §3.3 details the hardware-software co-design of MAPLE. §3.4 and
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§3.5 describe the experimental evaluation of MAPLE and present the results. Finally,

§3.6 summarizes this chapter.

3.2 Background and Motivation

3.2.1 The Need for Practical Specialization for IMAs

Over the last 30 years, many works have proposed techniques for memory latency

tolerance. With the increasing importance of graph analytics and sparse neural net-

work applications, recent techniques have focused on mitigating the latency of IMAs.

These can be coarsely divided into prefetching-based [5, 6, 7, 73, 188], streaming

multi-core [118, 161, 173], and decouple access-execute (DAE) [38, 61, 147, 157].

My work identifies four key limitations to be overcome to democratize access to

the benefits of these techniques in modern heterogeneous systems:

• Prior hardware techniques modify the core microarchitecture, sometimes even

reducing its generality. Adopting such techniques also increases the verification

burden of already overloaded hardware designers [53]. This is exacerbated in

the context of SoC generator frameworks [12, 15, 29, 181], where modifications

to third-party cores’ RTL can be very challenging and limit their reusability.

• Some modern software techniques assume special capabilities from the core, like

OoO or SMT. This limits their usage, e.g., area-constrained devices or manycore

systems use simple in-order cores.

• Techniques that rely on ISA extensions [62] or ISA-specific instructions have

limited applicability and portability problems, especially in the context of

heterogeneous-ISA architectures [14, 97].

• Hardware-only techniques like Slipstream [161, 165] or hardware prefetching [5,

73] often require costly structures for bookkeeping, detection, and prediction.
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Timely data supply is crucial for performance, and often data access patterns

are known in software [19]. Leveraging program knowledge, either extracted

by a compiler pass or explicitly written (in the backend of a DSL) is key to

delivering high performance at a low area and complexity cost.

Table 3.1 classifies prior software and hardware approaches in the extensive litera-

ture on latency tolerance of IMAs, based on the four identified features for a technique

to achieve ease of adoption, software programmability, and performance with in-order

cores.

Effectiveness on In-Order Cores

Prior work has already characterized that even OoO cores are not effective for the

sparse application domain without specialized techniques [106, 118, 170]. While prior

software-based techniques have achieved good performance on OoO cores, they are

not effective on slim in-order cores [6, 176].

Manycore systems composed of hundreds to thousands of cores are becoming in-

creasingly common in academia and industry [13, 45, 51, 52, 96, 178, 191]. With

MAPLE, manycore systems can better support the sparse application domain, by

using their memory hierarchy for regular accesses and leverage MAPLE to sup-

ply irregularly-accessed data, without incurring the area overhead of IMA-dedicated

prefetchers on every core.

3.2.2 Decoupled Access/Execute (DAE)

The DAE [157] paradigm was introduced decades ago to overlap memory accesses

and computation without relying either on out-of-order execution or on prefetching

unpredictable access patterns. DAE slices a program into two parallel threads, the

Access thread handles memory access and address computation, and the Execute

thread does computations. Ideally, the Access runs ahead of the Execute by issuing
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memory requests and enqueuing their data. In the meantime, the Execute consumes

the data from the hardware communication queue to perform value computations.

If the Access can run ahead of the Execute and produce all of the data required for

computation, it can act as a non-speculative perfect prefetcher.

Since DAE was originally proposed, several hardware implementations have

been proposed, where data communication occurs through architecturally-visible

queues [58, 104, 184]. In these papers, DAE aims to hide memory latency as a simpler

alternative to superscalar CPU cores. Later work analyzes the problems that arise

from work imbalance between Access and Execute [75] and loss of decoupling (LoD)

due to control dependencies [22]. Other work has envisioned Access and Execute

cores having multiple physical threads [141, 166], or even having both Access and

Execute as physical threads in the same core [38].

DeSC [61] builds upon DAE, introducing compiler and hardware optimizations to

avoid LoD and large instruction windows. It introduces a special buffer in the Access

core so that loads with no further dependencies (whose values are used exclusively

by Execute) can be loaded in this side buffer without stalling the pipeline. Memory-

access dataflow (MAD) [66] introduces an engine optimized for dataflow computation

that is integrated with cores or accelerators to execute memory-intensive portions of

programs.

The main limitations of DAE, DeSC, and all the prior art in hardware decoupling

are that they require (a) specific hardware changes for the Access and Execute cores,

limiting their usage to those roles, and (b) ISA-specific instructions to configure and

use the communication queues.

The Need for Hardware Support without Core Modifications

The work introduced in this chapter solves the above limitations by having the de-

coupling queues within the MAPLE tiles (as depicted in Figure 3.1) and exposing
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them to software via an API that solely uses memory-mapped loads and stores. With

this communication mechanism, MAPLE supports decoupling via its software API

(§3.3.1), without needing to modify the core altogether.

Because cores are not tailored to Access or Execute roles, they can be configured

to behave as one or the other at runtime, in any ratio, by using MAPLE decoupling

queues. MAPLE, as a memory access engine, can handle many data loads in parallel

by utilizing hardware queues to track data for completed memory requests. This

prevents stalls in the Access thread if it is not capable of hiding latency (e.g., short

instruction window).

LD B[i+X]

Time (cy)

Access thread runs X
loop iterations ahead
of the Execute thread, 

since MAPLE loads the data

10050 1500

CONSUME (i)

data

LD B[i]
LD A[B[i]]

200

dataDRAM latency

PRODUCE

data(i)

 

 for (i=0; i<N; i++)
    produce(&A[B[i]])

  for (i=0; i<N; i++)
       data = consume()
       res[i] = data * 42

Access thread

Execute thread

 ITERATION i 

ITERATION i

 ITERATION i+1 

PRODUCE

pointer (i+x)

CONSUME (i)Lost of runahead due to
stalled Access thread

data

CONSUME (i)
for (i=0; i<N; i++)
     data = A[B[i]]
     res[i] = data * 42

Original program

Figure 3.2: Memory transactions timeline of a decoupled program running on a thin
core baseline. The original program (in red) has been sliced into Access (green) and
Execute (blue) threads, using a software API for decoupling.

Figure 3.2 showcases how MAPLE’s hardware-software co-design provides the

programmability of software decoupling while being assisted by specialized hardware,

to achieve MLP even with simple cores. Since the Access thread is running on a core

with a small instruction window, a shared-memory implementation of decoupling 1

(below) loses runahead due to long-latency stalls of fetching IMAs, and so the Execute

1In a pure software implementation of decoupling the Access and Execute threads communicate
via a shared-memory software queue. The Access thread fetches data using regular loads and places
the data in the queue, while the Execute thread consumes the data from the queue.
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thread stalls waiting for the data to be produced. With MAPLE (above), the Access

thread only produces IMA pointers, which MAPLE will load asynchronously to the

core—in a highly parallel manner—and supply data to the Execute in time. The

performance gain of MAPLE for decoupling is demonstrated in §3.5.1 against software

and hardware decoupling approaches.

Because MAPLE supports decoupling with off-the-shelf cores, it is not limited to

this data-supply mode, and thus, it can support other latency-tolerance techniques,

like prefetching.

3.2.3 Prefetching

Hardware prefetching has long been proposed to avoid cache misses in regular access

patterns [73, 117], but traditionally does not work for IMAs. Recent proposals [5, 7,

188] create specialized hardware to prefetch IMAs, and Prodigy [170] even introduces

compiler techniques to further assist the hardware.

These hardware approaches have the drawback of the per-core area overhead of the

structures needed to predict access. In addition, these structures require modification

of the core microarchitecture, which is a considerable engineering effort both in de-

sign and verification. Thus, software techniques for latency tolerance are a tempting

proposition in terms of ease of adoption.

Software prefetching techniques keep the core untouched and can leverage compiler

knowledge. However, software prefetching incurs overheads due to code-bloating—up

to 8.5× the instruction count in inner-loops [6]. Prefetching might thrash the L1

too with large blocks or untimely data. To overcome these limitations, MAPLE also

serves as a programmable prefetcher.
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Efficient and Practical Prefetching with MAPLE

State-of-the-art software prefetching techniques can use MAPLE’s API to issue

prefetch commands (detailed in §3.3.2), which can also decide the granularity and

where to place the loaded data (into MAPLE queues or LLC). Moreover, MAPLE

has specialized logic for IMAs which occur in loops, avoiding the extra instructions

needed for address calculation of prefetches.

Summing it up, MAPLE provides the advantages of software techniques,

with the enhanced performance brought by specialized hardware for mem-

ory accesses, without the need for core modifications.

3.2.4 Additional Latency Tolerance Techniques

Slipstream [161, 165] and Triggered Instructions [140] strive to separate data access

and usage. Pipette [118] is a hardware-software co-design that aims to generalize

decoupling to a stream of stages that a program can go through. However, the deep

microarchitecture modifications of these techniques limit their adoption in practice.

Software latency tolerance often uses compiler knowledge to improve performance.

DSWP [147] does automatic software pipelining without speculation by utilizing a

hardware-aided inter-thread communication mechanism; Clairvoyance [176] proposes

compiler code separation into Access-Execute phases, to leverage the wide execution

engines present in OoO cores. However, these software techniques rely on expen-

sive hardware structures (ROB and LSQ) to maintain large instruction windows. As

an alternative to this, SWOOP [177] introduces compiler techniques, with the hard-

ware assistance for context remapping—a novel form of register renaming—to enable

dynamic separation of Access and Execute phases in the code. However, SWOOP

requires microarchitectural changes of the core, while MAPLE works with off-the-

shelf cores. The work presented in this chapter does not need the core to support
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large instruction windows since it can achieve memory-level parallelism (MLP) in an

area-efficient manner with MAPLE.

Helper threads avoid large instruction windows by using a secondary thread of

execution to improve the performance of the main thread [101]. This thread is either

programmer [36] or compiler generated [195]. Software prefetching has been shown

effective for pointer indirection [6], aided by compiler techniques to automatically

insert prefetches in the code. Helper threads and prefetching are sensitive to timeliness

and can cause cache thrashing if not properly controlled, along with other problems

like code-bloating described in §3.2.

Many of the latency tolerance techniques mentioned here can co-exist or

combine with MAPLE, e.g., by leveraging existing compiler techniques to target its

API [6, 87]. This work combines the advantages of software techniques, i.e., leveraging

program knowledge, and hardware specialization while remaining ISA-agnostic so it

can be widely adopted and extended.

3.3 The MAPLE Hardware-Software Co-design

MAPLE’s co-design offers a software interface to leverage its hardware specializa-

tion. Its communication mechanism is amenable for software pipelining and its pro-

gramming model is easily extensible to incorporate domain-specific access patterns

or more memory operations, e.g., data structure reshaping or Read-Modify-Write

atomic operations. This section elaborates on how MAPLE accommodates both soft-

ware prefetching and decoupling optimizations, with enhanced performance due to

specialized hardware assistance.

MAPLE can achieve speedups similar to that of latency-tolerant DAE architec-

tures, without requiring modifications to cores to designate them as Access or Exe-

cute. Instead, the DAE programming model is supported via the API (detailed in
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§3.3.1). When using decoupling API operations, MAPLE provides the data communi-

cation queue, where data for memory requests from the Access thread are enqueued in

order to serve the Execute thread. This enables the latency tolerance of DAE through

hardware that is outside the core, unlike many prior hardware DAE approaches, which

significantly modify the cores to support decoupling.

Additionally, MAPLE’s connection to the interconnection network (depicted in

Figure 3.3) eases its scalable integration, where possibly hundreds of units could be

connected to the SoC, each one supporting several queues. The concept of queues in

the API is a software abstraction detached from the hardware queues. A process can

allocate more queues than the ones available in a single MAPLE instance, by using

multiple MAPLE instances. A thread can communicate with any MAPLE instance

from user mode by having the OS map MAPLE’s associated page (address range)

into virtual memory, through memory-mapped IO (MMIO). This provides access

protection and transparent allocation.

§3.3.1- §3.3.3 provide examples of how the API can be used for different memory

optimizations. §3.3.4 describes the details of MAPLE’s hardware and §3.3.5 explains

how its hardware-software mechanism complies with virtual memory and requires no

ISA-dependent instructions.

3.3.1 MAPLE API for Decoupled Programs

The following list presents the API operations that emulate DAE techniques.

PRODUCE PTR utilizes MAPLE to load data and thus reduce the Access thread

burden, especially on accesses with poor cache locality.

• INIT(queues): Initializes the queues for a program.

• OPEN/CLOSE(id): Opens exclusive communication with a queue, or closes

such a connection.
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• PRODUCE (id, data): Pushes data into a queue.

• CONSUME (id): Pops data from a queue.

• PRODUCE PTR (id, pointer): pushes (stores) a pointer into MAPLE,

which will fetch its data from memory and write the response into a queue in

program order.

Besides these main operations, the API also contains functions to collect performance

counters and debugging.
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Figure 3.3: A high-level overview of MAPLE components including the scratchpad
(SP) storage that queues are sharing. Numbers represent the steps of a pointer-
produce operation and the letters the steps of data-consume.

Figure 3.2 motivated the advantages of decoupling a program using MAPLE. Fig-

ure 3.3 now shows the hardware components of MAPLE that are involved in this

program and their interactions with the rest of the system. MAPLE is connected to

the NoC through protocol decoders and encoders, and thus it can receive/send opera-

tions from/to the cores and make requests to DRAM and/or to the LLC. MAPLE also
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manages hardware queues for data communication between threads, implemented as

circular FIFOs, using its scratchpad.

Figure 3.3 depicts the software-hardware timeline of a pointer-produce (steps 1-6)

and consume operation (steps A-C).

The Produce path works as follows : (1) It starts by doing a store instruction

where the stored data is the pointer to fetch. This store is targeted to an address

composed of MAPLE’s instance base address, queue ID, and operation code; (2) The

decoder identifies the operation as a pointer-produce, and routes it to the produce

pipeline where it will reserve an entry in the corresponding queue; (3) The pointer

(virtual address) is first translated into a physical address in MAPLE’s memory-

management unit (MMU), and the data associated with that address is requested

from DRAM, using as the transaction ID the index of the allocated entry in the queue;

(4) The initial store request is acknowledged to the Access thread which considers the

produce as finished and retires the store instruction; (5) The memory request reaches

DRAM which responds to MAPLE; (6) The response is decoded and stored in the

corresponding queue entry.

Consumes occur later than the data production provided that the Access thread

has enough runahead. This should be the norm when using MAPLE, since the Access

is not stalled and the hardware queues are big enough to hold the data fetched in

advance.

The Consume path works as follows : (A) The execute thread generates a con-

sume operation—implemented in the API as a load request to MAPLE. Once the

load reaches MAPLE, it is decoded and routed to the consume pipeline; (B) It will

pop the entry in the head of the queue specified on the request (or stall until the

queue is not empty) and return the entry as a response to the load instruction; (C)

The response reaches the core that is running the Execute thread and the consume

operation finishes.
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Using MAPLE for decoupling brings software flexibility over the original hard-

ware DAE approach or state-of-the-art DeSC architecture. With MAPLE, Access or

Execute are conceptual roles taken by software threads rather than a hardwired core

type, and they can be determined at runtime. This enables dynamic reconfigurability

for applications with different data supply and computation demands. Some might

benefit from having multiple Execute threads being supplied from the same Access

thread, generating an asymmetric decoupling relation. This is possible with MAPLE

(see §3.3.6), unlike with previous architectures for DAE, which only scale in pairs of

Access-Execute cores [61, 157, 166].

3.3.2 MAPLE API for Prefetching

MAPLE’s API can also be used for software prefetching. Non-speculative prefetching

can leverage the aforementioned queue management functions and PRODUCE PTR to

place all the prefetched data into a queue within MAPLE. This is especially desirable

in the context of IMAs like A[B[i]]. Placing the data of irregular, cache-averse ac-

cesses into MAPLE has a two-fold advantage over placing it in the memory hierarchy:

it prevents data from being replaced if fetched too early with respect to its usage,

and it avoids thrashing the L1 cache with low-reuse data. Additionally, MAPLE can

prefetch into the shared LLC to support speculative prefetching (PREFETCH(ptr)).

Software prefetching of IMAs within inner loops incurs an instruction overhead to

calculate the address of the target prefetch and other book-keeping [6]. To remove

that overhead, MAPLE can prefetch Loops of Indirect Memory Accesses (LIMA).

This is targeted through API operations:

• LIMA (A,B,begin,end): It speculatively prefetches in hardware A[B[i]] (or

B[i] if A is 0) in the range between begin and end, into the shared-cache.
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• LIMA PRODUCE (qid,A,B,begin,end): LIMA version for non-speculative

prefetching, where the data is produced into MAPLE queues, to later be con-

sumed.

• PREFETCH (pointer): It speculative prefetches a pointer into the Last-level

Cache (LLC).

Figure 3.4 shows a code example of injecting LIMA speculative prefetching. A

single software operation provides prefetches for a whole loop of accesses (details in

§3.3.4).

    for ( i = 0; i < N; i++ ){
          // D is distance in number of iterations
          LIMA (A, B, ptr[i+D], ptr[i+1+D]);
          for ( j = ptr[i];  j < ptr[i+1];  j++ ){
                 res[j] = C[j] * A[B[j]];
          }
    }

Figure 3.4: Code example using MAPLE for prefetches of tight Loops of IMAs
(LIMA). Prefetching an entire loop of IMAs with a single operation is more effi-
cient than inserting prefetches in the inner loop. MAPLE can issue prefetches that
place the data in the LLC (speculative, shown here) or into MAPLE queues (non-
speculative). The IMA is marked in red and the cache-friendly access is marked in
green.

3.3.3 Targeting MAPLE Automatically

Although one could use the API directly, programmers should not explicitly need to

code the data movement. Instead, compiler passes or domain-specific languages such

as TACO [84] (sparse algebra) or GraphIt [196] (graph analytics) could use the API, as

they have knowledge about data structures and coherence. Recent automatic compiler

techniques already target software prefetching [6] and slice decoupled programs [61].

Therefore, they could be adapted to target API operations instead of ISA-specific

instructions.
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 for (i=0; i<N; i++)  
    res[i] = A[B[i]]*C[i]

A[B[i]]

*

Loop
start

C[i]

ST
res[i]

DDG

Access (Supply)
 DDG

Program slicing

PROD_PTR
&A[B[i]]

Loop
start

CONSUME

*

Loop
start

C[i]

ST
res[i]

Execute
(Compute)  

DDG

LLVM backend to 
target ISA

TARGET MACHINE

LLVM
pass

Figure 3.5: Process of decoupling a simple program via the compiler flow. First, the
program is sliced into Access and Execute, then a LLVM pass converts the IMA (in
red) into PRODUCE PTR and CONSUME API operations targeting MAPLE. Finally, both
slices are compiled down to assembly.

Figure 3.5 shows an adaptation of the compilation flow of DeSC [61, 159]. This

flow slices the program into Access and Execute threads; loads are transformed into

PRODUCE and CONSUME operations. After the program slicing, some loads no longer

have dependencies on the Access code (only on the Execute), and so the Access can

produce the pointer for MAPLE to load, PRODUCE PTR. §3.5.2 evaluates using this

LLVM-based [90] automatic compiler pass and shows that by simply utilizing estab-

lished compiler techniques, MAPLE can be leveraged to yield significant performance

improvements.
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Automatic compiler techniques for prefetching could potentially target the LIMA

operation, thus reducing the instruction overhead of software prefetching IMAs in

tight-inner loops, but this is out of the scope of this work.

3.3.4 MAPLE Hardware Implementation

Figure 3.6 presents the microarchitecture of MAPLE and shows the breakdown of the

aforementioned engine of MAPLE into three pipelines and a queue controller.
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Figure 3.6: Microarchitecture of MAPLE: designed to maximize MLP and area ef-
ficiency. The design has separate pipelines (yellow boxes) to avoid deadlocks. The
pipelines allow several concurrent operations, one per pipeline stage. The green boxes
depict NoC request and response buffers. The blue boxes represent complex compo-
nents within MAPLE. For example, LIMA loads chunks of adjacent data (B[i]) and
performs pointer indirection for each word by internally feeding pointers (A[B[i]])
into the Produce path.

The Configuration pipeline is used to create logical queues and bind them to

software threads at runtime. These queues are implemented as circular FIFOs using
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a local scratchpad. Depending on the program’s needs, one can configure to have

fewer, larger, queues, or many but smaller. There is an upper limit on the number of

queues per MAPLE unit, which is set as an RTL parameter at tape-out, along with

the scratchpad size. This pipeline receives read operations when the configuration

requires a response (e.g., queue binding), and write operations when the configuration

needs to specify a payload (e.g., for the LIMA unit). This pipeline is non-blocking as

it needs to be available for software configuration of the MMU and debug operations.

The Consume pipeline is solely used for cores to read data from the queues.

The Produce pipeline receives store instruction from the cores where the payload

contains either data or a pointer to fetch. PRODUCE operations are processed in several

stages: First, the transaction is buffered. In the case of a pointer, the virtual address

is translated in the MMU; second, a slot in the queue is reserved; third, either the data

is written into the reserved slot (data-produce) or the memory request is issued to

DRAM (pointer-produce) using the queue slot index as the transaction ID. Memory

responses come in any order. The transaction ID ensures that the data is written in

program order.

The reason to have separate pipelines is to avoid deadlocks. When a specific

queue is full, the operation is buffered (no overflow) in the first stage until an entry

is consumed. Meanwhile, operations to other queues can proceed without stalls.

Consumes work similarly, a load into an empty queue is buffered (no polling) until

new data is available to be returned to the core. Each pipeline has a final stage

to respond to the issuing core. This design was verified with industry-level formal

verification tools (§3.3.9).

Fetching Loops of Indirect Memory Accesses (LIMA)

LIMA operations fetch A[B[i]] for a given range of i. Once the base pointers for

arrays A and B are configured (virtual addresses), LIMA performs virtual memory
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translation and fetches array B in chunks of 64B that are stored in the scratchpad.

As soon as the chunks start arriving, LIMA iterates over them word by word utilizing

an offset into array A to calculate the final address. Finally, depending on whether

the prefetch is speculative or non-speculative, it inserts into the Produce pipe the

equivalence of a pointer-produce or a prefetch operation. Because MAPLE is ISA-

agnostic, the prefetch operations do not use ISA’s prefetch instructions. Instead, it

sends a network request to the shared cache, similar to how a private cache would do.

3.3.5 Virtual Memory Support

When a core requests a queue through the API, the OS maps a free MAPLE instance

into a virtual memory page. Thus, the core performs address translation to load

or store into the MAPLE address space, accessing that MAPLE context (control

registers) in a protected manner. Since this is a single page, the translation often

hits the translation lookaside buffer (TLB) with no overhead. Because the data that

is delivered to MAPLE can be a pointer, i.e., a virtual address, it needs translation.

MAPLE fully supports virtual memory through its local MMU and TLB, to be able

to access any regularly allocated memory. MAPLE’s TLB is fully associative and has

16 entries, the same as the cores’ TLB. Because IMAs are irregular and often span

different pages, TLB misses add latency to IMAs. The total latency is mitigated by

MAPLE with runahead execution and memory parallelism.

Upon a TLB miss, MAPLE’s hardware page table walker (PTW) fetches the

corresponding entry from the memory hierarchy. If the PTW encounters a page fault

(e.g., if the page is invalid), an interrupt is raised, and the kernel invokes the MAPLE

driver. This driver reads the virtual address that caused the page fault (using the

Configuration pipeline) and maps it into the page table if valid access. The device

driver implements Linux’s callback function for shootdowns, which are communicated

to the MAPLE-MMU to prevent stale entries.
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3.3.6 Communicating with MAPLE units

This section delves into the core attributes that set MAPLE apart. Each sub-

section provides insight into how MAPLE facilitates seamless communication with

CPU cores, supports multiple instances within an SoC, offers extensive software pro-

grammability for a range of operations, and ensures compatibility.

Portable

General-purpose cores can communicate with MAPLE from user mode through

memory-mapped I/O (MMIO). This allows operations like PRODUCE and CONSUME to,

under the hood, use existing store and load instructions, respectively. The round-trip

path is depicted and latency-characterized in Figure 3.14.

Scalable

Since many MAPLE instances can co-exist in an SoC (e.g., a tiled architecture), each

one is accessed via a different physical page. Virtual memory translation is leveraged

to provide process-exclusive access to MAPLE’s hardware resources and provide data

protection. This also allows a process to decide at runtime which MAPLE unit to

target. As aforementioned, previous approaches [61, 62, 157] do not offer this software

programmability for their decoupling hardware resources, as these are tightly designed

into specific cores.

Extensible

The fact that each unit’s control registers are mapped to a page allows MAPLE to re-

purpose the index of a word within the page to distinguish operation codes. MAPLE

is currently using 6 bits of this index to decode the operation code, which gives the

API up to 128 operation codes (i.e., 64 for loads and 64 for stores), and so many more

operations can be included.
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Core-Agnostic

The only capability MAPLE needs from a core is having load and store instruc-

tions. Thus, it can communicate with any off-the-shelf core and is not limited to

non-speculative in-order cores. A chip for different workloads, where OoO cores are

desired, could also integrate MAPLE units to speed up irregular accesses.

Efficient

MAPLE has full access to the memory hierarchy, thus, it can do cache-coherent loads

from the LLC or non-coherent loads directly to main memory (determined by the

decoded operation code). There are advantages and limitations inherent to the idea

of offloading memory operations into a specialized unit. MAPLE behaves effectively

as a scratchpad memory, and thus, the data has no coherence guarantees after it is

fetched. The compiler technique or DSL using the API should make sure that the

arrays loaded by MAPLE have no further writes to them. This condition holds for

the irregularly accessed array of most of the graph algorithms studied since updates

often occur only after an epoch barrier. Leveraging conditions known at the software

level allows MAPLE to use highly parallel and efficient hardware.

MAPLE is an easy-to-adopt and scalable resource to include in an SoC to speed

up workloads that do not leverage traditional cache locality and benefit from a pro-

grammable unit accessible from the memory hierarchy.

3.3.7 MAPLE Integration via NoC

A key feature of MAPLE is that it can be adopted by a system without modifying

existing hardware, It can simply be accessed via the on-chip interconnection network

(NoC). This procedure has been followed for the P-Mesh protocol of OpenPiton, which

is an open-source, tile-based SoC framework [15]. Figure 3.7 depicts this integration
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of MAPLE on its own tile via the NoC routers. This integration has been evaluated

on FPGA (§3.4.2) and the results are reported in §3.5.1.
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Figure 3.7: Integration of MAPLE as a tile in the OpenPiton manycore system.
MAPLE only needs to be connected to the NoC through its parameterizable encoders
and decoders.

Ease of adoption: The integration of MAPLE with OpenPiton took around a

hundred Verilog RTL lines of code (LoC), which demonstrates that it is easy to adopt.

This contrasts with the 5K LoC of MAPLE itself. This demonstrates the advantage

of integrating it as a reusable IP block versus building it from scratch. Moreover,

the integration does not require details about the underlying system aside from the

communication protocol. It is agnostic to ISA and CPU internals.

3.3.8 Reusing MAPLE in SoCs

Deep microarchitecture changes are hard to take into practice because of the verifi-

cation burden. Hardware designers are spending about half their time doing verifi-

cation [53], and trends [150] indicate that the number and diversity of IP blocks per

SoC can exacerbate this burden. Several frameworks have emerged to make multicore

SoC development agile [12, 15, 29, 181], by connecting highly parameterized IP blocks

to form a complete SoC design. Reusing IP alleviates the verification burden so that

engineers can focus on system-level requirements [10]. However, SoC generator frame-
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works do not have a reusable hardware solution to the memory latency bottleneck

yet. Because MAPLE is agnostic to the ISA and core model, it could even be included

in SoC frameworks with heterogeneous cores [10, 15] and hybrid ISAs [14, 97].

3.3.9 Formal Verification of MAPLE

MAPLE saves verification effort over the prior work in latency tolerance techniques.

It is so because the verification burden is shifted from the integration process to the

decoupled unit. My work invested significant time to verify MAPLE’s correctness at

the unit level, to remain agnostic of the rest of the system and to ease integration.

This makes MAPLE reusable without the verification burden of a tightly coupled

integration. The verification was conducted using the AutoSVA toolflow [127] as de-

scribed in Chapter 2, and manually writing more assertions for functional correctness

verification (some of which are described by Markakis [107]).

The development of MAPLE followed a verification-first approach to save late-

stage debugging time and increase confidence in creating a verifiably correct design.

This verification process exhaustively tested the pipelines and MMU interactions. As

a result of this thorough process, the RTL design is verified for functional correctness

and liveness. The quality metrics provided by JasperGold give confidence in the

goodness of the assertions—they cover more than 99% of MAPLE’s RTL.

After integrating MAPLE with the final system, the SVA properties are also on

the system-level simulation testbench, where MAPLE’s design held correct.

3.4 Evaluation Methodology

This section first describes four widely used data-analytic benchmarks that exhibit

memory latency bottlenecks due to IMAs. Second, it provides details of the SoC

prototype emulated on FPGA. Then, it describes the methodology employed for the
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evaluation of MAPLE over prior work using a simulator with the same configuration

as the FPGA evaluation. Finally, it discusses the sensitivity analysis performed to

better understand MAPLE’s performance and the implications of its design choices.

3.4.1 Applications for Data-analytics

Memory latency bottlenecks of Graph and Sparse Algebra applications have been

characterized several times in the last couple of years [61, 118, 170] with over 60-70%

of the runtime dedicated to memory stalls.

Sparse matrices often contain few non-zero elements and therefore are stored in

compact representations. Two of the most popular representations are Compressed

Sparse Row (CSR) and Compressed Sparse Column (CSC). They both efficiently

represent a sparse matrix using three one-dimensional arrays to store the number of

non-zero elements of a row (or column), indices of non-zero matrix elements within

that row (or column), and the non-zero matrix elements. Meanwhile, dense matrices

are simply stored as one-dimensional arrays, similar to the data arrays in the CSR and

CSC formats. Because they are dense, the indices of the elements can be determined

by knowing the number of rows and columns and do not require information about

where non-zero elements are located.

Sparse Dense Hadamard Product (SDHP): Performs an elementwise opera-

tion, e.g., multiplication, between a sparse and a dense matrix. Because the operation

is performed elementwise, the dense matrix is sparsely sampled based on the locations

of non-zero elements in the sparse matrix. This results in irregular accesses to the

dense matrix, as they are not predictable and therefore not amenable to the cache

locality. By decoupling the kernel so that the Access can fetch the irregular memory

accesses before the Execute core needs their data, this performance bottleneck can

be alleviated.
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Sparse Matrix-Matrix Multiplication (SPMM): Performs a matrix multi-

plication between two sparse matrices A and B in a layer-wise fashion [110] to train

a sparse deep neural network. This kernel is parallelized in the columns of B, while

intermediate results are stored in a dense, temporary matrix.

Sparse Matrix-Vector Multiplication (SPMV): Performs matrix multiplica-

tion between a sparse matrix and a dense vector.Similar to SDHP, the dense vector is

sparsely sampled according to the non-zero elements of the sparse matrix, providing

an improvement opportunity for decoupling.

Breadth First Search (BFS): Determines the distance (number of hops) from

a given root vertex in a graph to all other vertices. The traversal starts at the root

and in each iteration, examines all vertices in a layer-wise fashion to find neighbors

that have not been visited and require an update. Accessing neighbor data requires

IMAs.

Datasets: These kernels are evaluated using real-world networks and synthetic

datasets. SDHP uses matrices from SuiteSparse [46] and a Kronecker network [95],

BFS operates on Wikipedia, YouTube, and LiveJournal graphs, while SPMM and

SPMV use synthetic matrices from riscv-tests [149].

3.4.2 FPGA Emulated SoC System

As described in §3.3.7, MAPLE’s RTL is integrated within the OpenPiton framework,

to characterize its advantages in a real system. This integration employs RISC-V

CVA6 Ariane [189] cores to demonstrate how latency tolerance can be achieved even

in simple, non-speculative, in-order cores which are commonly used in area- and

power-constrained environments.

Table 3.2 presents the SoC details as well as the parameters used for MAPLE and

the FPGA used for the prototype.
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SoC configuration OpenPiton + MAPLE

MAPLE Instances / Scratchpad Size 1 / 1 KiB
Core Count / Threads per core 2 / 1
Core Type RISCV64 Ariane 6-Stage In-Order
L1-D + L1-I per core / Latency 8 KiB + 16 KiB 4-way / 2 cycle
L2-size per tile (shared) / Latency 64 KiB 8-way / 30 cycle

FPGA board Virtex 7

Model XC7VX485T-2FFG1761C
Board Xilinx VC707
Core Frequency 60 MHz
CLB LUTs Utilized 216831 (69.9%)
DRAM Device / Size / Latency DDR3 / 1 GiB / 300 cycle

Table 3.2: SoC configuration for the full-system evaluation booting Linux v5.6-rc4,
including MAPLE (top), and the specification of the FPGA board used for it (bot-
tom).

This FPGA evaluation runs applications on top of SMP Linux (version v5.6-rc4).

The applications and datasets described above are evaluated running single-thread

and multithreaded versions with OpenMP [41] parallelization. The FPGA evaluation

highlights the performance speedups obtained by doing prefetching and decoupling

through MAPLE, over the baseline of do-all parallelism.

The evaluation compares the same decoupled program with the API, using (a) a

shared-memory implementation of decoupling; and (b) an implementation targeting

MAPLE to characterize the benefits of this hardware-software co-design. Then, the

evaluation compares the latest prefetching techniques over using LIMA to fetch loops

of IMAs. For a fair comparison, prefetches are inserted in the code at the best location

known to the programmer.

The related work has not provided RTL implementations. Since implementing

related work [16, 61] in RTL would take months (even for people with industry expe-

rience), these are compared against using a simulator. Software-only techniques are

evaluated on FPGA emulation. The FPGA could only fit a MAPLE instance and two

cores, so large thread counts are evaluated on the simulator as well (Figure 3.13). The
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simulator-based evaluation of MAPLE over prior decoupling leverages the automatic

compiler program-slicing seen in §3.3.3. However, this slicing was done manually for

the FPGA runs, since this was not yet incorporated into the FPGA flow.

3.4.3 Evaluation Against Prior Work

In addition to the real-system evaluations, which demonstrate a significant improve-

ment over the baseline, MAPLE is evaluated over the latest latency-mitigation ap-

proaches, including DeSC decoupling [61] and DROPLET hardware prefetching [16],

via system simulation. This evaluation leverages MosaicSim [108], a simulator for

heterogeneous architectures and hardware-software co-design, and models the com-

munication queues used in MAPLE.

System Model Parameter Values

Core Model in-order single-issue
Core Count / Threads per core 2 / 1
Instruction Window / ROB Size 1 / 1, In-Order
L1-D (per core) / Latency 8 KiB / 4-way / 2 cycle
L2-size (shared) / Latency 64 KiB / 8-way / 30 cycle
DRAM Size / Bandwidth / Latency 4 GiB / 68 GB/s / 300 cycle

Table 3.3: Core and memory parameters of the simulated system, to compare MAPLE
over the prior work.

Table 3.3 shows the core model and memory hierarchy parameters of the sim-

ulated system. The simulator model matches the SoC configuration to prove the

same premise, that MAPLE can provide latency tolerance even for single-issue in-

order cores. This evaluation leverages DEC++ [159] compiler flow for automatic

code transformation of MAPLE-decoupling and DeSC.

3.4.4 Sensitivity Parameters to Characterize

MAPLE has many interesting parameters worth evaluating like the size of the queue

connecting a pair of threads (determined at runtime). For decoupling, this queue must
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be big enough to allow the Access thread to run ahead and hide the memory latency

so that the Execute thread does not stall waiting for data. However, the smaller

the size, the more logical queues can share MAPLE scratchpad memory. This size is

closely related to the round-trip latency between MAPLE and any given core (sets the

throughput to/from the queue) along with the DRAM latency since it determines the

runahead that is necessary. The performance counters provided by MAPLE through

debug operations (when running on the FPGA) are studied to evaluate the impact

of different queue sizes on the runahead between Access and Execute.

It is important to characterize the round-trip latency between cores and MAPLE,

since it determines the cost of consuming data. This latency depends on the memory

hierarchy, the network, and the placement of MAPLE unit(s). The round-trip latency

in the OpenPiton framework is analyzed via waveforms of an RTL simulation. The

impact of this latency on performance is then evaluated by varying it as a parameter

in simulation.

3.5 Results

This section first presents the FPGA evaluation of the small SoC prototype using

MAPLE for decoupling and prefetching over software-only techniques and do-all par-

allelism. These results were validated in the DECADES chip evaluation [55]. Second,

there is a comparison against prior hardware techniques, both for decoupling and

hardware prefetching. Finally, this section presents the conclusions from the sensitiv-

ity studies and the area analysis of MAPLE’s RTL implementation.

3.5.1 FPGA Emulation of the SoC Prototype

Figure 3.8 compares the speedups achieved by decoupling Access and Execute threads

using MAPLE’s API and a shared-memory implementation, over traditional doall
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parallelism on 2-threads. The rightmost comparison shows the geomean speedup

obtained across all applications. Using MAPLE achieves 1.51× speedup over doall

and 2.27× over software-only decoupling. This demonstrates that decoupling is not

performant by itself in area-constrained systems without MAPLE hardware support.
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Figure 3.8: Speedups obtained with decoupling (1 Access and 1 Execute thread), nor-
malized to 2-thread doall parallelism. It showcases that decoupling only in software
is not effective on the in-order baseline without hardware support.

Figure 3.9 evaluates MAPLE against software prefetching with a baseline of no

prefetching for single-thread execution. That comparison also includes MAPLE’s

LIMA PRODUCE operation, which places the prefetched data into its hardware queues

for later consumption. Since IMAs have poor cache locality, it is better to consume

them from MAPLE (as non-cacheable) and reserve the caches for regular data accesses

that exploit locality.

Figure 3.9 shows the speedups of prefetching IMAs in hardware with MAPLE

(using the LIMA operation), and conventional software prefetching. The geomean

speedup is 1.73× over no prefetching and up to 2.4× for SPMV. In addition, using

MAPLE achieves a geomean speedup of 2.35× over software prefetching, showing the

advantage of not bringing highly irregular data into the L1 cache.

2The FPGA runs plotted in Figure 3.8 and 3.9 were performed by Fei Gao, as co-author of [126].
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Figure 3.9: Speedups obtained for a single thread doing non-speculative prefetching
with MAPLE (using the LIMA operation) and conventional software prefetching,
normalized to no prefetching. It shows that placing the IMA prefetches into MAPLE
queues is desirable over prefetching into the L1.

Moreover, prefetching using MAPLE reduces the instruction overhead of software

prefetching since IMAs in a whole tight inner loop can be offloaded into MAPLE with

a single LIMA operation.

Figure 3.10 presents the normalized overhead of load instructions due to prefetch-

ing relative to the baseline with no prefetching. Software prefetching doubles the

number of loads, whereas MAPLE slightly reduces the total number of loads. The

reduction occurs because the sparse IMAs are gathered inside MAPLE queues, and

if the data type is a 32-bit word (as it happens in SPMV), the core loads two words

at a time.

Figure 3.11 shows the average latency of load instructions, as measured via

MAPLE performance counters. Using MAPLE’s LIMA operation for prefetching

significantly decreases the average load latency to nearly half (1.85× geomean reduc-

tion), thus demonstrating its effectiveness in hiding memory latency of cache-averse

accesses. This latency reduction is significantly more effective than doing software

prefetching into the L1 cache, which suffers from cache thrashing due to the low spa-

tial and temporal locality of IMAs. Moreover, consuming data from MAPLE queues
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Figure 3.10: Normalized load-instruction overhead due to prefetching using the
MAPLE’s LIMA operation and software prefetching, normalized to no prefetching.
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Figure 3.11: Average clock cycles of load instructions. It compares software prefetch-
ing and LIMA operation. It shows that MAPLE prefetches are timely.

avoids the premature replacement of prefetched data in caches. These advantages

are shown clearly for SPMV.

LIMA operations can be used to complement regular prefetching in-

structions, where MAPLE is targeted for IMAs while regular access pat-

terns are prefetched natively. Since the compiler can automatically detect which

accesses are irregular [159], it could insert adequate prefetches.
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3.5.2 Comparison against Prior Work

Figure 3.12 compares the runtime performance of MAPLE decoupling, DeSC [61]

decoupling, and DROPLET [16] hardware prefetching, as well as that of traditional

doall parallelism, for 2 threads. The speedup result for each application is the geomean

of the speedups obtained across the datasets evaluated. 3
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Figure 3.12: Speedup (y-axis) achieved with MAPLE, DeSC, and DROPLET over the
baseline. Decoupling with MAPLE and DeSC uses 1-Access and 1-Execute threads,
while DROPLET and the baseline perform 2-thread doall.

DeSC slicing is more restrictive than MAPLE decoupling, since DeSC’s Execute

(Compute) core does not have visibility into the memory hierarchy, and all data is

passed to the Access (Supply) to be stored. This results in a loss of runahead for BFS,

and thus DeSC performs poorly compared to MAPLE. Decoupling, in general, is not

effective for the selected SPMM implementation, since the IMAs are Read-Modify-

Writes and cannot be decoupled. Unlike DeSC, MAPLE does not propose a DAE

architecture, but rather it is one of the modes supported, i.e., if the compiler pass for

program slicing cannot find an IMA, it falls back to doall parallelism. In contrast,

SPMV and SDHP kernels—well suited for decoupling—achieve high performance with

DeSC. The price to pay for that is the threshold latency for cores to communicate

3The simulator runs plotted in Figure 3.12 were performed by Aninda Manocha, as co-author of
[126].
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with MAPLE, which is higher than the architecturally visible, tightly-coupled queues

of DeSC.

MAPLE supports a flexible alternative to DeSC for decoupling, which

does not constrain the architecture. Despite no core modifications, MAPLE achieves

at least 76% of DeSC ’s performance for decoupling-friendly applications, and it

presents overall better performance. It achieves a geomean speedup of 1.72× over

DeSC and 1.82× over DROPLET hardware prefetching, and up to 3× (geomean

1.96×) over doall for BFS.

3.5.3 Conclusions about the Sensitivity Studies

Figure 3.13 shows good scalability with an increasing number of threads, maintaining

the speedup achieved over doall parallelism when scaling to 4 and 8 threads sharing

the same MAPLE unit for decoupling. More units can be employed for larger thread

counts in a tiled manner, conforming to a scalable system, only limited ultimately by

the chip IO.
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Figure 3.13: Speedup (y-axis) achieved with decoupling (threads are sharing a single
MAPLE unit) over do-all parallelism, with scaling threads: 2, 4, and 8.
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When fetching data into MAPLE queues (decoupling or non-speculative prefetch-

ing), the long latency of IMAs is reduced to the CONSUME round trip between the core

and MAPLE. Figure 3.14 shows the characterization of that latency for the Open-

Piton SoC. This latency is similar to the L2 access, 25 cycles plus a cycle per hop,

and an order of magnitude smaller than DRAM.

LSU L1 MAPLE    

ARIANE CORE TILE X TILE X+1

1 cycle 2 cycles

L1.5

4 cycles

4 cycles

TRI
iface

5 cycles1 cycles 2 cycles

NoC

3 cycles

3 cycles

Figure 3.14: Step-by-step breakdown of the round trip latency of Core-to-MAPLE
communication at the OpenPiton framework. Latency could be lower if L1 requests
do not pass through the L1.5 cache. A lower communication latency would incur
greater performance benefits (studied in Figure 3.15).

In a manycore mesh scenario, MAPLE instances are often scattered across the X

and Y tile axes so that they are near cores. As explained in §3.3.6, MAPLE instances

are mapped into virtual memory, and a process could leverage the OS to minimize the

distance between the running core and any available MAPLE instance, to minimize

round-trip latency.

Besides evaluating the particular latency of the OpenPiton network, Figure 3.15

characterizes how the performance changes with smaller and larger communication

latency values. The number next to MAPLE represents the average round-trip latency

between cores and MAPLE, in cycles. This demonstrates that speedups are greater

with a lower NoC delay.
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Figure 3.15: Speedup (y-axis) achieved with different core-to-MAPLE latency values,
to study the impact of communication latency on performance.

Although it is not explicitly shown, we studied the performance impact of different

queue sizes and observed it to remain stable as long as the queues can hold enough

data to hide latency. A queue of 32 entries—4 bytes each—was sufficient to provide

runahead without losing performance, while 16 entries caused a 5-10% decrease. With

32 entries per queue, MAPLE can supply data for up to 8 cores with just 1 KiB of

storage (256 entries).

3.5.4 Area analysis of the RTL Implementation

The synthesized MAPLE design including 8 circular queues sharing a 1 KiB scratch-

pad represents 1.1% of the area of the in-order Ariane cores it can supply, which are

already very area-efficient. Thus, the overhead of MAPLE compared to more beefy

cores would be negligible. MAPLE need not be per-core, and thus its area can be

amortized over multiple cores that use it. In contrast, tightly integrated prefetchers

can increase logic delay, core area, and cycle latency

Some prefetcher designs claim a low storage overhead (<1 KiB), but their de-

signs also contain FSMs, muxes, and combinational logic whose area is not accounted

for in their bitcount-based (storage) estimates. While area overheads for IMP [188],
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Prodigy [170] and other related works only count storage, MAPLE overhead is cal-

culated from the 12nm synthesis of the DECADES chip tapeout.

3.6 Chapter Summary

This chapter has introduced a hardware-software co-design for latency tolerance that

offers the best of both worlds: its flexible software interface enables MAPLE to be

automatically targeted by compiler techniques for both prefetching and decoupling,

and its specialized hardware does not need ISA extensions nor microarchitectural

changes to the cores, which is key in today’s open-source hardware renaissance.

This chapter demonstrated MAPLE gains on FPGA emulation by running sparse

linear algebra and graph analytic kernels on SMP Linux. MAPLE provides signif-

icant performance improvements, 2.35× and 2.27×, over software-only techniques,

and 1.82× and 1.72× geomean, over hardware prefetching and decoupling respec-

tively. Moreover, MAPLE provides increased programmability and reusability over

hardware-only approaches. The key to performance/area efficiency is to benefit both

from compiler-extracted program knowledge and hardware specialization, while the

key to usability is to provide a generic, extensible software interface and easy-to-adopt

hardware.
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Chapter 4

A Data-Centric Execution Model

and Architecture for Sparse

Applications

The previous chapter highlights how sparse applications perform poorly on traditional

memory hierarchies and presents a specialized NoC-connected component to mitigate

memory latency. However, once latency is mitigated, the next bottleneck is memory

bandwidth.

This chapter addresses the memory bandwidth bottleneck of the sparse application

domain by migrating compute to the data. This is done via a novel data-centric

execution model and a scale-out architecture design that pushes the parallelization

limits and improves the best results of the Graph500 benchmark [113] for the datasets

evaluated, by up to 25×.

The work presented in this chapter is partly based on a publication in the Proceedings of the
29th IEEE International Symposium on High-Performance Computer Architecture (HPCA) [133] as
well as other pre-publications[130, 134]. Thus, this chapter discusses collaborative work between the
author of this dissertation and the coauthors of [133, 130, 134]. Figures in this chapter are taken or
adapted from those publications.
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4.1 Introduction

Modern systems are increasingly exploiting heterogeneous, accelerator-rich designs

to scale performance despite the slowing of Moore’s Law and the end of Dennard

Scaling [65, 150]. While compute-bound workloads thrive in an accelerator-rich en-

vironment, memory and communication-bound workloads have not seen the same

benefits.

Of these, the sparse applications this dissertation focuses on (i.e., graph algo-

rithms and sparse linear algebra) have the following characteristics that challenge

their scalability:

• Low arithmetic intensity, measured in floating-point operations (FLOP) per

byte of data loaded from memory.

• Irregular and fine-grained indirect memory accesses (IMAs) that make memory

hierarchies inefficient by bringing blocks of data with little reuse.

• Atomic accesses, synchronization, and inherent work imbalance resulting in poor

utilization of computing resources.

Limitations of Current Solutions

Prior work has proposed solutions with different levels of specialization to mitigate the

challenges of sparse applications. Research using general-purpose CPUs has proposed

using software prefetching or pipelining to mitigate memory latency [61, 106, 118,

126, 170], and coalescing to reduce atomic update serialization [112]. Other work

using accelerators has pipelined the different stages of graph processing directly in

hardware [1, 40, 63, 119, 137, 146]. However, bottlenecks persist when increasing the

level of parallelism due to limited bandwidth to main memory.

Approaches doing processing in-memory (PIM) improve memory bandwidth by

placing processing units (PUs) on the DRAM device [4, 194, 198]. However, this
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integration limits to a few tens the number of PUs that can be co-located with the

memory device, constraining the level of parallelism. Moreover, PIM per se does not

solve the problem of work imbalance and synchronization between the PUs and the

communication bottlenecks between memory devices.

Work imbalance is a significant problem in parallelizing graph algorithms. The

widely varying number of edges per vertex leads to an imbalanced work distribution

across PUs. This causes poor utilization of the PUs and thus poor scalability as the

number of PUs increases.

Another major challenge is that due to the pointer indirection, memory accesses

are highly irregular, causing intense traffic of data blocks between memory regions.

In PIM or distributed-memory architectures, this data movement ultimately results

in communication bottlenecks, that are exacerbated with caching and coherence over-

heads.

Opportunities

This work started by examining the features that are necessary to execute graph work-

loads in a scalable manner. To maximize throughput (edges processed per second),

the solution should:

• Minimize the data movement, which is bottlenecking performance and domi-

nating energy consumption. Given the low arithmetic intensity of sparse ap-

plications, migrating the compute to the data offers an opportunity to achieve

this data movement minimization.

• Better exploit the spatio-temporal parallelism of operations to improve work

balance and resource utilization.

• Avoid serializing events such as global synchronization and read-modify-write

atomic operations.
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To push the parallelization limits of graphs and sparse applications to the scale of

millions of PUs, this chapter introduces a data-centric execution model and an archi-

tecture that exploit these opportunities without sacrificing software programmability.

The Data-centric Execution Model

This work employs a tile-based distributed-memory architecture, where each tile is

responsible for a chunk of the partitioned global address space (PGAS). The execution

model is such that the program is split into tasks so that each task only operates within

a chunk of the PGAS. Tasks are routed to and executed at the tile responsible for

the PGAS chunk that the task operates on. We refer to this novel execution model

that migrates compute tasks to the data location as Dalorex.

Dalorex exploits pipeline parallelism by splitting the sequential code inside a

parallel-loop iteration into tasks at each pointer indirection. Correct program or-

der is guaranteed because new tasks are spawned by the parent task by placing their

invocation parameters into the NoC. Since the spawned tasks are independent and

execute in any order, Dalorex achieves synchronization-free spatio-temporal paral-

lelism.

Figure 4.1 illustrates how Dalorex (right panel) minimizes data movement com-

pared to do-all parallelism using shared memory (left panel).

In shared-memory architectures, sparse applications result in overwhelming data

movement: data-reuse distance is highly irregular, and thus, cache thrashing leads to

more than 50% of all memory accesses missing in the cache levels and going to main

memory [106]. Modern shared-memory architectures also carry the overhead of cache

coherence, virtual memory, and atomic operations.

In Dalorex, each piece of data is only accessed by one PU, and thus, all mem-

ory operations are inherently atomic. Instead of bringing data to the PUs, Dalorex

spawns a task by sending a message to the tile containing the data to be processed
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Figure 4.1: Program execution of three sequential graph-processing steps in a cache
hierarchy (left), and Dalorex (right). Instead of moving data with little reuse, Dalorex
invokes tasks where the data is local—reducing movement.

next. Dalorex exploits the pointer indirection in sparse data formats to route a task-

invocation message. The PU at the destination tile executes the task based on the

message type and invocation parameters received.

Although there is no fundamental reason why the Dalorex execution model cannot

be implemented on existing shared-memory or message-passing architectures, the

synchronization and software overheads would not render this fine-grain tasking model

efficient. To efficiently support Dalorex, a series of hardware and software innovations

are necessary.

Hardware Support for the Data-Centric Execution Model

The data-centric architecture introduced in this chapter is logically organized as a

grid of homogeneous tiles that are connected by a NoC. The NoC has a 2D-torus
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topology to make the NoC traffic more uniform than the mesh topology, which is

particularly beneficial for the irregular communication patterns of sparse workloads

(§4.4.3).

Tiles are designed to enable efficient Dalorex execution at scale by providing:

• A router that connects the tile with the NoC (§4.4.2).

• A task scheduling unit (TSU) that receives task-invocation messages from the

router, places them into the queues and eventually schedules tasks to execute

at the PU. Based on the queued tasks, the TSU prioritizes some types of tasks

versus others based on queue occupancy and network traffic, to optimize for

overall system utilization (§4.4.1).

• A PU with an area-efficient in-order pipeline. The PU does not have a main

execution thread but rather executes tasks as directed by the TSU in a non-

blocking and non-interrupting manner.

• A private local SRAM memory (PLM) that stores the task code, memory-

mapped task queues, and the data for which the tile is responsible, where the

data may be stored in full or cached (§4.4.4).

Hardware Support for Scalable Reduction Operations

Ownership-based task execution makes all memory operations atomic by design. This

is a huge advantage for sparse workloads, as it eliminates the need for critical sections

or atomic operations for data updates. However, for skewed datasets (e.g., power-law

distribution of graph edges), the PUs at the tiles that contain more frequently updated

data will have to process more tasks. Low PU utilization due to data skewness is not

a problem of Dalorex alone, but of atomic operations in sparse workloads in general.

Since the atomic updates in sparse workloads are associative and commutative

(also referred to as reductions), the way the literature in distributed systems improves
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utilization is by having compute nodes operate on copies of the reduction arrays that

are merged upon global synchronization [47, 102]. However, this purely software-

based approach uses memory inefficiently as it requires full copies of the data to be

reduced, and the need for a synchronized merging step.

This chapter proposes hardware support for asynchronous and storage-efficient

reductions. This is supported by introducing:

• Proxy ownership. In addition to the PGAS data ownership, a tile is also re-

sponsible for a fraction of the copy of the reduction array. There is a copy of

the reduction array for each proxy region (subgrid of the tile grid) and as many

regions as configured. Thus, for each element of the reduction array, there are

as many proxies as there are proxy regions. The proxies merge the data from

their region and eventually spawn a task towards the data owner, which can be

opportunistically captured en route by other proxies (§4.5).

• Proxy cache (utilizing the PLM), to avoid the overhead of storing copies of the

reduction arrays. The write-back or write-through policy determines how the

reduction tasks eventually reach the data owner (§4.5.2).

These techniques reduce overall communication traffic and improve load balancing.

Given the cascading nature of this task-based reduction, we refer to this hardware

support as Tascade.

Chapter Outline

The rest of this chapter motivates, describes and evaluates the techniques introduced

here, and is organized as follows. §4.2 provides background information about sparse

workloads and describes the scalability limitations of current solutions. §4.3 elab-

orates on the key aspects of the Dalorex task-based execution and how it affects

software programming and dataset distribution. §4.4 describes the hardware support
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introduced to make task invocations native operations to the architecture. §4.5 intro-

duces the Tascade hardware support to make reduction tasks in Dalorex extremely

scalable and efficient. §4.6 presents the methodology, applications, and datasets used

to evaluate the proposed architecture. §4.7 characterizes the improvements of some

of the techniques and shows power and performance results for increasing levels of

parallelism. Finally, §4.8 summarizes the chapter and presents conclusions.

4.2 Background and Motivation

This section starts by describing the pointer indirection arising from sparse data struc-

tures, and how it affects the parallelization of graph algorithms. Then, it describes

prior works and their limitations in addressing the challenges of sparse workloads at

scale.

4.2.1 Sparse Data Structures and their Pointer Indirection

Graphs are represented using adjacency matrices where rows/columns represent ver-

tices and values, weighted edges. Since columns contain mostly zero values (most

vertices have few connections), these matrices are stored in formats like Compressed-

Sparse-Row (CSR).

Figure 4.2 shows the sequential code for Single Source Shortest Path (SSSP) which

illustrates the use of the CSR format and the pointer indirection arising from it. In a

regular memory hierarchy, the accesses to neighbor vertex data in the innermost loop

(line 8) result in many cache misses and thus, costly accesses to main memory [106].

Moreover, the source vertex data (lines 3 and 4) and the neighbor index (line 6)

are also accessed indirectly, and the utility of the cache depends on the number of

neighbors and the workload distribution.
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In Dalorex, the code is split at each level of pointer indirection, leading to a series

of tasks. For example, T1 accesses arrays dist and ptr (tuple of size #vertices),

while T2 accesses arrays edge idx and edge values (tuple of size #edges), and T3

accesses dist.

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13

TASK 1

   
TASK 2

TASK 3 

while not frontier.isEmpty() 
  parallel for (v : frontier) 
   node_dist = dist[v] 
   startInd, endInd = ptr[v], ptr[v+1] 
   for i in range(startInd, endInd): 
     neighbor = edges[i] 
     new_dist = node_dist + edge_val[i] 
     curr_dist = dist[neighbor] 
     if (new_dist < curr_dist): 
       dist[neighbor] = new_dist 
       new_frontier.push(neighbor) 
frontier = new_frontier 
new_frontier = []

Figure 4.2: Pseudocode of the Single Source Shortest Path (SSSP) algorithm, and
how it is split into Dalorex tasks based on pointer indirection.

4.2.2 Bulk Synchronous Parallelization (BSP) of Graph Al-

gorithms

Figure 4.3 depicts the program order and synchronization for BSP versus Dalorex,

where colors indicate task type based on the code of Figure 4.2. The BSP model

(left) leverages data parallelism by simultaneously processing the vertices in the fron-

tier. However, the fact that exploring a vertex (red) and its neighbor list (orange)

may generate as many neighbor updates (blue) as vertex neighbors, results in work

imbalance for non-uniform graphs.
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Exposing More Parallelism

In BSP, the frontier is the data structure that contains the vertices to be processed in

the next iteration, i.e., the level of parallelism. The frontier is typically a centralized

data structure, and its updates are synchronized across all PUs.

In addition to the data parallelism of the vertices in the frontier, Dalorex exploits

pipeline parallelism. Figure 4.3 illustrates this by showing the pipeline of task invoca-

tions (within each vertex exploration) across multiple tiles while preserving program

order.
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Figure 4.3: Program order and synchronization for BSP versus Dalorex. Columns
show the tasks that are executed in each tile (arrows depict program order). Letters
represent different vertex explorations, i.e., iterations of the parallel for loop of Fig-
ure 4.2. Dotted boxes depict that tasks from other iterations may interleave.

Moreover, instead of using a centralized frontier, Dalorex uses a distributed fron-

tier, where each tile has a local chunk of the frontier, referred to as the local frontier.

This removes the synchronization overheads of frontier insertions and makes barri-

erless implementations of graph algorithms [64] easy to adopt. As a result, Dalorex

exposes more parallelism for the PUs to exploit.

While Figure 4.2 and Figure 4.3 use a graph algorithm as an example, similar

pointer indirection arises from the use of sparse matrices in linear algebra applica-

tions. Moreover, applications not using sparse data structures like Histogram also
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exhibit pointer indirection that benefits from Dalorex’s task-based parallelization.

§4.6 elaborates on the applications and datasets used to evaluate Dalorex.

Algorithmic variants

There are two modes of processing graph data: pulling data for a vertex from its

neighbors or pushing data to its neighbors [18]. While pull-based algorithms tend to

require higher memory bandwidth and more operations as they iterate over all the

vertices for every graph epoch, push-based algorithms require irregularly addressed

atomic memory operations [20]. A hybrid version, direction-optimized BFS [17], and

its variants can offer faster convergence. However, they incur a storage overhead and

need heuristics, as they may access either the source or the destination of an edge.

Although pull-based algorithms could be executed on Dalorex, we focus on

push-based algorithms due to their reduced communication and work efficiency since

Dalorex eliminates the need for atomic operations.

4.2.3 Prior Work

As aforementioned, the IMAs in sparse workloads do not exhibit spatial or temporal

locality, resulting in poor cache behavior and intense traffic in the memory hierar-

chy [106]. In addition, parallelization of sparse workloads results in work imbalance

and serialization due to atomic operations and synchronization. Prior work has mit-

igated some of these challenges individually but none has achieved the scalability

unleashed by our work.

Memory-Latency Mitigation and Work Balancing

Recent work (including the work introduced in Chapter 3) has used decoupling to

overlap data fetch and computation by running ahead in the loop iterations to bring
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the data asynchronously [106, 118, 126, 170]. To accomplish this, they perform pro-

gram slicing on each software thread, creating a software pipeline effect.

Others have proposed accelerators to perform the graph search as a hardware

pipeline [1, 63, 119, 137, 146]. Polygraph [40] generalized prior accelerator designs

to perform any of their algorithmic variants and optimize work efficiency based on

dataset characteristics. Fifer [119] offers a dynamic temporal pipelining to achieve

load-balancing, while Hive and Swarm provide ordered parallelization [74, 145].

While effective for hiding latency and increasing load-balancing, these approaches

remain inefficient due to excessive data movement and are ultimately limited by

DRAM and network bandwidth.

Bandwidth-Reduction Techniques

Previous work aiming to reduce the bandwidth bottleneck of sparse workloads in-

cludes COUP [193], which performs coalescing of updates at the private-cache level

and PHI [112], which extends this to multiple cache levels. In addition, RICH [49]

focuses on executing reduction operations near memory and SortCache [160] utilizes

vectorized binary search trees to better utilize cache and reduce bandwidth.

However, these approaches are based on hardware additions to shared-memory

architectures, which do not scale to the thousands or millions of PUs that Dalorex

targets.

Scalable Memory-Bandwidth

To increase memory bandwidth and reduce data movement, prior work [4, 194, 198]

following the processing-in-memory (PIM) principles introduce PUs into the logic

layer of a 3D Hybrid Memory Cube (HMC) [69, 142]. They execute remote pro-

cedure calls at the PUs located near the data, similar to the execution-migration

literature [100, 154]. However, their performance is limited because: (a) Their vertex-
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based data distribution causes load imbalance since the highly variable vertex degree

in graphs causes a different workload per PU; (b) Tesseract remote calls are inter-

rupting, incurring significant penalties, and GraphQ’s solution to overcoming this

employs barriers for batch communication [198], causing high synchronization over-

heads; (c) HMC-based architectures are constrained in the number of PUs per cube

(a PU per vault).

This dissertation strives to parallelize beyond the constraints set by HMC and so

a different integration is necessary. Moreover, larger parallelism requires splitting the

work into smaller tasks, which is prohibitive with the interrupting nature of remote

calls.

Manycore Architectures

From Systolic arrays [76, 77, 88] and streaming architectures [67, 172, 173], to modern

manycores [15, 45, 52, 191], largely parallel architectures have not been designed for

the IMAs or low arithmetic intensity of sparse applications.

Even though some manycore architectures have utilized large amounts of SRAM to

achieve high on-chip bandwidth [30, 85], their network design and dataflow-oriented

execution model do not effectively support the irregularity of IMAs and thus they

achieve poor PU utilization.

The architecture presented in this chapter takes inspiration from modern many-

cores and introduces hardware support for irregular, fine-grain invocation of tasks, as

well as work-balancing techniques to achieve high PU utilization on sparse applica-

tions.

Distributed Systems

Due to storage limitations, graph networks with trillions of edges inevitably need to

be partitioned and processed by multiple systems.
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Gluon [43, 44] offers a lightweight API to enable optimization of communication

when running programs on distributed systems that process partitioned graph data.

Gluon’s approach is complementary to our work and could have an additive effect if

they were to be combined. Our work focuses on minimizing data movement within

a single partition or unpartitioned graph, whereas Gluon decreases communication

between compute nodes processing each graph partition by optimizing the update

process of vertices that are shared across partitions.

GiraphUC [64] puts forward a barrierless model that reduces message staleness

and removes global synchronization across nodes in a distributed system, much like

Dalorex does with the local frontiers. However, GiraphUC is not optimized for data

locality and has high communication costs. Pregel [102] does parallelize tasks such

that each iteration is executed where the data is local, but the data is distributed in

a vertex-centric manner, resulting in inherent load-balancing problems and commu-

nication overheads.

Distributed graph processing frameworks [54, 102, 175, 197] have introduced

valuable techniques that mitigate communication and synchronization across cluster

nodes. However, they do not achieve as high parallelism within each node due to the

memory and communication bottlenecks of current computer architectures, which

this dissertation addresses.

4.3 The Data-Centric Execution Model

The goal of data-centric execution is to minimize data movement across the network,

and thus, maximize the available bandwidth.

88



4.3.1 Data distribution

Graphs and sparse matrices are often stored in formats like CSR using four data

arrays. In Dalorex, these arrays are laid out in the address space so that each tile is

responsible for an equal-sized chunk of the arrays. This data may be stored in full

in the tile’s local memory or cached, depending on the memory hierarchy configured

(§4.4.4)

For example, the edge values array has as many elements as edges (E) in

a graph. This array is split as in Listing 4.1 so that each of the T tiles has

EDGES PER CHUNK (E/T ) adjacent elements, e.g., the first tile contains elements from

0 to EDGES PER CHUNK-1.

Distributing the graph’s adjacency matrix in this manner may seem naive; the

usual approach is to do a 2D distribution of the matrix [23], where each comput-

ing element gets a rectangular subset of the matrix to compute. However, this 2D

distribution presents challenges such as hyper-sparsity (making CSR use storage in-

efficiently) and uneven storage needs (different numbers of non-zero elements), while

Dalorex’s approach of equally distributing memory across tiles improves load balance.

4.3.2 Programming model

The BSP model parallelizes graph algorithms at the outer loop (processing vertices

in the frontier), the inner loop (processing the neighbors of the frontier vertices), or

both, since these iterations can be processed in any order. We posit that if instructions

within a loop iteration are performed in program order, the location of the execution

can be altered. The Dalorex task model preserves program order within an iteration

since subsequent tasks are invoked by the parent task in a pipeline fashion. Since

only one tile has access to each data chunk, coherence is not an issue.

Adapting a graph kernel to Dalorex involves splitting the program into multiple

tasks at each pointer indirection. As Figure 4.2 shows, this results in three tasks
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for SSSP, where each task produces the array index to be accessed by the next task.

Additionally, SSSP (and the other graph algorithms mentioned in §4.6) use a fourth

task to explore the frontier vertices—shown in Listing 4.1.

Every tile contains the same code locally and can perform any task that operates

on its local data. In that sense, Dalorex exploits data parallelism of the outer and

inner loops, and pipeline parallelism within the inner loop.

From the program execution timeline perspective, after a tile performs a task, it

sends the output of the task (i.e., the input for the next task) to the tile containing

the data to be operated next, thus preserving sequential order.

From the point of view of an individual tile, task invocations may arrive in any

order into their corresponding task-specific queues. The execution order of different

tasks is determined by the TSU—described in §4.4.

From the user perspective, the code would not be manually split into tasks.

Rather, users would write their code in domain-specific languages [84, 196] or

parallel-programming frameworks [50, 81], for which the Dalorex backend would be

implemented.

4.3.3 Program Flow and Synchronization

In Dalorex, processing tiles learn what to execute by awaiting the task parameters

to arrive in the corresponding input queue. PUs are then invoked by the TSU to

process these tasks. A task may invoke other tasks by placing their parameters into

an output queue (OQ). An OQ can be either another task’s input queue (IQ) if it

operates over data residing in the same tile or a channel queue (CQ), which puts a

message into the network.

Listing 4.1 contains the code of the Dalorex-adapted SSSP kernel. To start running

SSSP, only the tile containing the root of the graph search receives a message to invoke

the first task.
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1 param VERTICES_PER_CHUNK , EDGES_PER_CHUNK # Filled when the program is loaded

2 var dist[VERTICES_PER_CHUNK], ptr[VERTICES_PER_CHUNK] # Local chunk of the dataset

arrays

3 var edge_idx[EDGES_PER_CHUNK], edge_values[EDGES_PER_CHUNK]

4 const FRONTIER_LEN = VERTICES_PER_CHUNK /32

5 const OQT2 = 1024

6 var frontier[FRONTIER_LEN] = [0,...,0] #Bitmap frontier and memory -stored variables

7 var blocks_in_frontier = 0, neighbor_begin = 0, t1_new_vertex = True

8

9 # Configure network channels between tasks and their queues

10 CQ1 = channel(q_len =128, target=T2 , encode=EDGES_PER_CHUNK)

11 CQ2 = channel(q_len=OQT2 ,target=T3, encode=VERTICES_PER_CHUNK)

12

13 # Declaring a task requires IQ length and parameters loaded before the invocation

14 task T1 [32] (): #T1 params aren’t pre -loaded. We read from the IQ of T1

15 vertex_id = peek(IQ1.head)

16 if (t1_new_vertex) neighbor_begin = ptr[vertex_id]

17 neighbor_end = ptr[vertex_id +1]

18 while (!CQ1.full && (neighbor_begin < neighbor_end)):

19 # Split msg if range crosses chunk limits or > OQT2

20 tile = (neighbor_begin/EDGES_PER_CHUNK) + 1;

21 partial_end = min(neighbor_end , tile*EDGES_PER_CHUNK)

22 partial_end = min(partial_end , neighbor_begin + OQT2)

23 CQ1 = neighbor_begin ## global idx for tile address

24 CQ1 = (partial_end % VERTICES_PER_CHUNK) ## local idx

25 CQ1 = dist[vertex_id]

26 neighbor_begin = partial_end

27 # Pop vertex_id if the whole range was pushed to CQ1

28 t1_new_vertex = (neighbor_begin == partial_end)

29 if (t1_new_vertex) pop(IQ1.head)

30

31 # Task parameters are loaded by TSU before the task begins

32 task T2 [128] (neighbor_begin , neighbor_end , vertex_dist):

33 for i in range(neighbor_begin ,neighbor_end):

34 # Writing to a Channel Queue sends data to the network

35 CQ2 = edge_idx[i]

36 CQ2 = edge_values[i] + vertex_dist

37

38 task T3 [2048] (neigh_id , new_dist):

39 curr_dist = dist[neigh_id]

40 if (new_dist < curr_dist):

41 dist[neigh_id] = new_dist

42 # Insert vertex into Local Frontier

43 blk_id = neigh_id >> 5;

44 blk_bits = frontier[blk_id ];

45 frontier[blk_id] = mask_in_bit(blk_bits , neigh_id)

46 if (blk_bits == 0): # Only add newly active blocks

47 IQ4 = blk_id; blocks_in_frontier ++

48

49 task T4 [FRONTIER_LEN] (): # Re-explores the local frontier queue

50 frontier_block = peek(IQ4)

51 while(blocks_in_frontier > 0 && !IQ1.full):

52 blk_bits = frontier[frontier_block]

53 block_base = frontier_block << 5;

54 while(blk_bits > 0 && !IQ1.full):

55 idx = search_msb(blk_bits)

56 blk_bits = mask_out_bit(blk_bits , idx)

57 vertex = block_base + idx

58 IQ1 = vertex

59 # If no pending vertices , we remove the block from the frontier queue

60 if (blk_bits == 0):

61 pop(IQ4); blocks_in_frontier --

62 frontier_block = peek(IQ4)

Listing 4.1: Pseudo-code of the SSSP algorithm adapted for Dalorex. The Dalorex
programming model would be embedded in a high-level language via an API, and be
used by a compiler or library developer.
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T1 obtains the range array indices that contain the neighbors of vertex id. If

this range crosses the border of a chunk, a separate message is sent to each tile with

the corresponding begin and end indices. Similarly, the range is split if the length is

bigger than the constant OQT2 (line 22) to guarantee that T2 can execute its loop and

spawn new tasks without exceeding the capacity of CQ2 (lines 33-36). To check that

CQ1 does not overflow, T1 needs to explicitly check CQ1 capacity (line 18). If CQ1

fills before sending all the messages for vertex id range, the flag t1 new vertex is

set to false (line 28), and T1 will continue exploring the range in the next invocation.

Note that vertex id was explicitly loaded with peek, as opposed to T2 and T3, where

the task parameters are implicitly popped from their IQs by the TSU (§4.4).

T2 calculates the new distances to all the neighbors of vertex id from the root

using their edge values and sends this value to the owner of T3 data.

T3 checks whether the distance of neigh id from the root is smaller than the

previously stored value. If so, neigh id needs to be inserted in the frontier.

Task Invocations

When placing the parameters of the next task into a CQ, the first one is the index

of the distributed array to be accessed so that the message is routed to the tile

containing the data for that index. §4.4 details how the hardware ensures that the

task invocation message arrives at the correct tile, and once there, how the task is

queued for execution.

Graph Exploration Frontier

Since in Dalorex the data is distributed, the frontier is also distributed—implemented

as a bitmap indicating which vertices are active, instead of a centralized list. This

facilitates using graph algorithm implementations that do not require a global barrier

after each epoch to explore the new frontier. As such, each tile is allowed to re-explore
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its local frontier when it is idle without needing to wait for the other tiles to finish

their work, resulting in a continuous flow of tasks.

The local frontier—a piece of the distributed bitmap frontier—accumulates the

updates to the vertices that a tile owns. T4 is responsible for re-exploring the local

frontier. To avoid iterating over every 32-vertex block of the bitmap when T4 is

invoked, T3 pushes the ID of a new block to be explored (blk id) into IQ4. Then, T4

reads from IQ4 and pushes the vertices into IQ1 so that they are processed again.

Global Synchronization

When barrierless implementations are not possible or desired, Dalorex supports global

synchronization by aggregating a hierarchical, staged, idle signal from all the tiles (co-

located with the clock and reset signals). The tasks in Listing 4.1 would remain the

same, but T4 would not be scheduled to execute until all the tiles are idle. The

performance of workloads with and without global synchronization is characterized

in §4.7.

The program ends when all tiles are idle and all queues are empty. Similar to a

loosely-coupled accelerator [37, 143], the host gets an interrupt when the global idle

signal is set to notify that the work is completed.

Host and Program Initialization

The host is a commodity CPU that arranges the load of the program binary and

the dataset from disk to the device memory. The program, composed of tasks and

memory-mapped software configurations, is distributed as a broadcast and is identi-

cal for all the allocated tiles. In the SSSP code depicted in Listing 4.1, the per-task

declaration including the number of parameters and queue sizes are part of the con-

figurations that are passed to the TSU (depicted in Figure 4.4).
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The host starts the program by sending the first task invocation message. For

example, in the case of SSSP, the first task is visiting the root of the graph search.

Multi-tenancy

Although the §4.7 results evaluate a single program on the system, a Dalorex device

could potentially support multiple users running programs concurrently. Because a

Dalorex device has a certain address range (depending on the memory capacity), a

user within a host CPU can map part or all of the Dalorex device to its virtual address

space. This mapping of the Dalorex address range to the host address space would

allow protected, dedicated access to the tiles associated with it.

4.4 Hardware Support for the Data-Centric Exe-

cution Model

This section describes the hardware support that this dissertation introduces to ef-

ficiently execute the data-centric execution model. Although the Dalorex execution

model could be supported in different tiled-manycore architectures—including exist-

ing ones—this section also presents the architecture design that best suits Dalorex.

Figure 4.4 shows the organization of a processing tile in the proposed architecture.

The PU is a power- and area-efficient single-issue in-order core, without a memory

management unit, as the data is accessed directly from the private local SRAM mem-

ory (PLM). The PLM contains the data arrays, the code, and the input/output queue

entries. The queues are implemented as circular FIFOs using a software-configurable

fraction of the PLM and their size is set at runtime based on the number of entries

specified next to the task declaration (detailed in Listing 4.1). The task scheduling

unit (TSU) is responsible for invoking tasks based on the status of the queues, and

the router connects the TSU with the network.
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Figure 4.4: Organization of a processing tile. TSU feeds the PU the next task to
execute based on the occupancy of the task queues. The router connects TSU with
the network. TSU uses the PLM to write incoming network data (push) to the IQs
and reads (pop) outgoing data from the channel queues (CQs).

For the rest of this section, §4.4.1 describes the TSU design, §4.4.2 elaborates on

the router and its importance for delivering tasks to the data owner, §4.4.3 details

how the network supports irregular memory accesses at different scales, and §4.4.4

describes how the tiles’ PLMs can be used as a scratchpad or as a cache, to define

the on-chip memory as a one- or two-level hierarchy.
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4.4.1 The Task Scheduling Unit (TSU)

The TSU is the key hardware unit to enable Dalorex’s data-centric execution model.

It contains the task configurations and scheduling policy and handles the queues’

head and tail pointers. The TSU has a read-write port into the PLM for pushing

data from the router buffers to the input queue (IQ).

Queue-specific registers

The tail and head pointers of queues are exposed to software through dedicated

PU registers. This allows the PU to read or write from its queues with a register

operation, avoiding address calculation, as in streaming registers [151, 173]. A read

from this register results in a load from the PLM using the corresponding queue’s

head pointer provided by the TSU. This read also triggers the update of the head

pointer in hardware at the Task Queue Status table.

Scheduling

The TSU is responsible for invoking tasks based on the status of the queues, resulting

in a closed-loop feedback system. Tasks cannot be blocked by external events, i.e.,

they execute from beginning to end. The TSU may only invoke a task if its IQ is

not empty and its OQ has sufficient free entries. When all IQs are empty, the TSU

disables the clock of the PU to save power. The TSU needs to arbitrate when two or

more tasks have non-empty IQs.

Priority

The queues’ occupancy acts as a sensor for the TSU to decide which task to prioritize.

A task has three priority modes based on queue occupancy: high priority if its IQ

is nearly full, medium priority if its OQ is nearly empty, and low priority otherwise.

Compared to round-robin, we found that occupancy-based priority improved perfor-
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mance because a primary source of network contention is end-point back-pressure,

so preventing full IQs decreases contention (see §4.7) Moreover, reaching high re-

source utilization relies on tiles giving each other work, so keeping OQs not empty is

beneficial.

Using an occupancy-based priority order results in a feedback loop for task

scheduling achieving high core utilization and low network contention. These heuris-

tics are micro-coded as event-condition-action rules based on the reaction time to

prioritize a task and prevent the IQ from getting full.

Channel Queue (CQ)

A CQ is a type of OQ that is used to send data to the NoC. A task writes to a CQ

to spawn a task for a remote tile, when the data is not known to reside in the local

tile. Otherwise, the task could directly push into the local IQ of the next task.

4.4.2 Router

The router has bi-directional ports to north, south, east, west, and toward the tile’s

TSU. The router determines the message destination based on the data in the first flit

of a message, which we call the head. Since the head flit always contains a dataset-

array index, and these arrays are statically distributed across the chip, this index is

used to obtain the destination tile. The TSU’s channel table contains the sizes of the

local chunks and the number of parameters (flits) of each message type. The head

encoder uses that information to calculate the destination tile and the local index

(modulo the chunk size). The encoder also uses the width of the Dalorex grid to

obtain the X/Y coordinates. Depending on the width and height of the chip, the

upper bits of the head flit encode the destination tile (log2(width) + log2(height)).

Routers compare incoming head flits with their local X/Y tile ID to determine where
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to route it next. If routed to the TSU, the head decoder removes the head flit’s

tile-index bits before pushing it to the IQ.

The payload-based routing saves network traffic as it does not use metadata. The

length of messages at each channel is known, and its flits are always routed back to

back since a route (from input to output port) opens with the first flit and closes

after the corresponding number of flits has left the router. Interleaving flits from

two messages going to the same output port on the same channel is not allowed.

Messages from different input ports that want to route to different output ports can

do so simultaneously. However, if they want to route to the same output port, the

router arbitrates between them by doing a round-robin between full messages.

NoC channels

The NoC supports a series of channels that connect different task types. For exam-

ple, in Listing 4.1, NoC channels are configured to connect the outbound CQs to

their destination task type. Messages can be composed of several flits, each being a

parameter of the task to be called. In that sense, inter-tile communication for task

invocation is composed of flits traveling in different logical channels that share the

same NoC. In our experiments, a flit has the same size as a queue entry, which is the

width of the PU’s ALU and the memory addresses (32 bits).

Channel Buffers

In addition to identifying the task type, communicating tasks in different channels

prevents deadlocks by letting messages from different channels make progress inde-

pendently. Although channels might contend to use the physical NoC, the routers

contain buffers per channel so that a clogged channel does not block others. Each

router has a pool of buffer slots per outbound direction shared between the chan-
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nels. The size of this pool is a tapeout parameter, but the number of buffer slots per

channel is software-configurable, as are the sizes of the input/output queues.

4.4.3 Communication Network

Since Dalorex’s execution model uses task invocations that do not return a value,

communication is one-way only, resembling a software pipeline. Therefore, the com-

munication latency between the sender and receiver tiles does not contribute to the

execution time if the pipeline is full, i.e., task invocations are continuous. How-

ever, the throughput would suffer if pipeline bubbles were formed due to network

contention.

Based on the contention towards the center that occurs on a 2D mesh when

communication is irregular, the NoC employed in Dalorex is a 2D torus. Particularly,

it is a wormhole NoC with dimension-ordered routing and implements a local bubble

routing to avoid the ring deadlock. This NoC can be fabricated with equidistant wires

by having consecutive logical tiles at a distance of two in the silicon, i.e., a flattened

or folded torus.

To enable subgrids of the chip to be a torus, as well as enable torus across multiple

chips, this work introduces the design of a torus NoC whose topology can be configured

in software. To support multi-chip systems, the torus can be confined within a silicon

die, or have it span multiple chips within the board of a compute node. (Table 4.1

shows the interconnect energy and latency assumed in our evaluation for hops at each

level.)

Figure 4.5 shows that the routers at the edges of each die can be configured to

connect to a router on the next die or wrap around by connecting to the adjacent tile

(Tiles 0 and 63). Moreover, we can reconfigure a 2D-torus NoC into two 2D-mesh

NoCs by not connecting the wrap-around links on the routers at the edges. This
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Figure 4.5: Horizontal links within a die and across dies. The red links show the
NoC that connects every tile (tile-NoC ), while the blue links show the NoC that
connects to one tile per die (die-NoC ). Because of the die-NoC, the routers at the die
edges are radix-9, while the rest are radix-5. The ports shadowed in blue are runtime
reconfigurable; any tile subgrid within a node board may become torus (including
across packages). The dies on the edges of a package will interface with the I/O die.

allows for a 2D-mesh NoC to be used for streaming data from I/O to the tiles, and

then reconfigure it to a 2D-torus NoC for the rest of the execution.

Reducing long-distance communication

To reduce the number of hops across chips in a multi-chip setting, our design supports

two hierarchical NoCs, one that connects every tile and one that hops once per die, as

shown in Figure 4.5. Each NoC topology is individually configured. While bringing

the data inside the package from the disk, they both would be configured as a mesh

to increase I/O. During the execution, both may become torus, or the die-NoC may

also remain open to stream I/O data.

4.4.4 Software-configurable Memory Hierarchy

One of the aforementioned challenges of sparse workloads is their low arithmetic inten-

sity. This results in higher memory bandwidth demands per compute unit than dense

workloads. To accommodate different memory bandwidth requirements with the same

silicon for cost efficiency, Dalorex’s memory hierarchy is software-configurable.

The PLM can be used as a scratchpad when the aggregated tiles’ memory is viewed

as the distributed on-chip memory, or as a data cache when the chip package also
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integrates DRAM devices like high-bandwidth memory (HBM) chiplets. In either

case, the address range per tile (used to orchestrate Dalorex tasks) is equal to the

on-chip memory capacity divided by the number of tiles.

In addition to reading data, the PU has another port into the PLM to fetch

instructions and another to push and pop data from the queues. Not every memory

bank needs to have all these ports, but only the PLM banks that may be configured

to store program code and queues (see Figure 4.4).

Cache mode

The cache mode allocates a portion of the PLM as a direct-mapped cache to keep the

overhead to a minimum. It stores cacheline tags and the valid bit in the PLM too,

so the area overhead of the cache is only the logic for tag comparison. This mode is

used to configure a data cache, which is backed up by an on-chip or off-chip DRAM

device, and also to configure the proxy cache (described in §4.5). For the data cache,

the cacheline size is equal to the bitline width of an HBM memory controller (512

bits in our experiments).

Upon a miss, the data cache fetches the full cacheline from DRAM without check-

ing for coherence since in Dalorex the data is not shared. The data cache has a dirty

bit per line to write back to DRAM upon eviction. Since the data cache of each

tile only contains the part of the dataset that the tile is responsible for, there are no

coherence issues for modified data.

Scratchpad mode

When scaling out the parallelization of a dataset, if the memory footprint per tile fits

in the PLM, the data cache would not be configured. Instead, the data arrays are

directly accessed from the PLM and managed as a scratchpad.
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4.5 Tascade Hardware Support for Reductions

As aforementioned in §4.2.2, programs whose loops can be parallelized have the un-

derlying assumption that any interleaving of operations across different iterations

preserves correctness. Many graph and sparse applications have associative and com-

mutative reduction operations, making them amenable to such parallelization, pro-

vided that all writes to the same data happen atomically.

Distributed-memory MapReduce [47] implementations may avoid atomic opera-

tions by updating local copies of the result array and merging these copies at the

end upon global synchronization. However, since pre-merge computations and the

merging process in itself cannot be overlapped in such software schemes, it leads to

idle PUs towards the end of the computation phase.

In the single-owner-per-data model of Dalorex, every memory operation is inher-

ently atomic, so data copies are not required to avoid atomic operation overheads.

However, large parallelizations using the Dalorex model may experience work imbal-

ance when the underlying dataset is skewed, as only a single tile’s PU can operate on

a given data. To mitigate imbalance and long-distance invocations when processing

reduction operations at scale, this section introduces hardware support for coalescing

and filtering reduction tasks that can be processed by proxy tiles en route to the

data owner (depicted in Figure 4.6). This aggregation process resembles a flow of

cascading tasks, and thus, this approach is named Tascade.

Data Ownership

As in Dalorex, the dataset arrays are distributed across the address space so that

every tile owns an equal-sized chunk of each data array. In the context of reduction

tasks, we use data owner to refer to the tile that holds a particular element of the

reduction array (Rarray) in its PLM.
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Proxy Ownership

This additional mode emerges by allowing storage of a temporary copy of the reduc-

tion array, called proxy array (Parray), per subdivision of the tile grid, called proxy

region (see Figure 4.6). In a given proxy region, a proxy tile is responsible for caching

elements belonging to a fraction of the Parray—equally divided among the region’s

tiles. Having each Parray distributed across a region—as opposed to each tile hav-

ing its own—decreases the storage overhead of data-private reductions by a factor of

W 2 where W is the width of the proxy region—assuming square-shaped regions. We

say that a tile is a proxy for the elements of the Rarray for which it owns the Parray

counterpart, as it can operate on those elements, and eventually merge the updates

to the data owner. A tile operates on the Parray via the Proxy cache (P-cache) to

further decrease the storage overhead of data-private reductions by C, i.e., the ratio

of the local Parray fraction to the P-cache size (detailed in §4.5.2 and evaluated in

Figure 4.12).

Each tile can be viewed as the root of a reduction tree for the Rarray elements it

owns. The rest of the nodes in the tree are the proxies of those elements, one per

proxy region. Figure 4.6 depicts that for two separate elements for which the blue

and red tiles are the owners, and the cyan and magenta tiles are its proxies. The

tree is asymmetric since the proxies are distributed across the grid, one per region,

on the same coordinates within each region as the data owner. The rationale for this

is that since 2D NoC topologies often use dimension-ordered routing, the proxy tiles

are on the path of the data updates toward the owners and so they can capture these

updates as proxy tasks (see §4.5.1) to filter and coalesce them, minimizing the NoC

traffic. In addition, to improve PU and NoC utilization, the updates are captured

opportunistically, leveraging our selective cascading approach (§4.5.3).
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Figure 4.6: Reduction Trees of Tascade. Two reduction flows are depicted, where the
single blue and red tiles are the roots, and the several cyan and magenta tiles are the
proxy tiles of the two different flows, respectively. The flow of updates is shown for
a 2D mesh for clarity. Since all proxies (P) of a particular element of the reduction
array have the same coordinates within each region, this allows for cascading updates
selectively by proxies en route to the owner (O).

4.5.1 Proxy Tasks

Any reduction task in the data-local execution model can have a proxy task (i.e., a

task that operates on a copy of the reduction array). Our evaluation (§4.7) applies

this to the vertex update task of graph applications, and to the output vector for

histogram and sparse matrix-vector multiplication. This is depicted in Figure 4.7 for

the single-source shortest path (SSSP) algorithm 1 where T3 is the reduction task and

T3’ is its proxy task.

The configuration code in Figure 4.7 (above) describes how proxy regions are

defined in software with a grid example of 9 proxy regions of 4x4 tiles. The proxy

1The rest of the tasked SSSP code was already shown in Listing 4.1.
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CQ2 = channel(target=T3', encode=VERTICES, region_w=4, region_h=4)
CQ3 = channel(target=T3, encode=VERTICES, proxy=T3', region_w=4, region_h=4)
var dist[VERTICES] // shortest distance of a vertex to the search root
var p_dist = proxy_array(size=VERTICES, num_regions=9, default_val=INFINITE,
update_policy=write-through, channel=CQ3)

task T2(neigh_b,neigh_e,vert_dist):
 for i in range(neigh_b, neigh_e):
   CQ2 = edge_index[i]
   CQ2 = vert_dist + edge_values[i]

Proxy
Region 
4x4 tiles

T3

task T3'(neigh_id, new_dist):
 if (new_dist < p_dist[neigh_id])
    p_dist[neigh_id] = new_dist

task T3 (neigh_id, new_dist):
 if (new_dist < dist[neigh_id]):
    dist[neigh_id] = new_dist
    add_to_frontier(neigh_id)

T3'

T2
T2

T3' T3'

T3'

Figure 4.7: Software configuration of proxy regions and flow of tasks for single-source
shortest path (SSSP). This grid example configured 9 proxy regions of 4x4 tiles. Each
region contains an entire copy (p dist) of the reduction array (dist), where each tile
is a proxy for a fraction of it. T3’ tasks write to p dist, which lives in the P-cache
(see §4.5.2). Upon a cache miss, it returns the default value. T3 tasks are invoked
based on the write-propagation policy of the P-cache (i.e., write-through in SSSP).

task (T3’) operates on the proxy array (p dist), that is, each region’s copy of the

reduction array (dist). Reads and writes to the proxy array are directed to the

P-cache, and so when defining the proxy array we are also configuring the P-cache.

This configuration includes the default value returned upon cache misses, the policy

for propagating updates (§4.5.2), and the channel that will carry that update.

The write-propagation policy determines how the updates made to the P-cache

are propagated to the tile that owns the corresponding reduction array data. The

SSSP code in Figure 4.7 uses a write-through policy, where updates are immediately

propagated to the owner tile. However, because SSSP performs a minimization op-

eration T3’ tasks only write to the P-cache if the new dist value is smaller than the

current value.
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Figure 4.7 depicts a filtering scenario with two invocations of a proxy task (T3’)

executed on the same tile but coming from different T2 tasks, where only one of them

updates the P-cache. First, this scenario considers a T2 task invoking (red arrow) a

T3’ for which new dist is larger than the p dist[neigh id] value stored in the P-

cache, and thus it is not updated; we refer to this as filtering since having a local proxy

avoided the long-distance communication to the owner. Second, another T2 invokes

(blue arrow) a T3’ that does update p dist and thus, the P-cache propagates the

update using the configured channel (CQ3). Next, this update message—addressed to

execute T3 at the owner (as per CQ3 configuration)—may be captured by one of the

proxy tiles (depicted with clouds) while en route to the owner, based on the selective

cascading policy (§4.5.3). If captured, then T3’ is executed on the proxy tile, which

may or may not cause an update, that would then continue its way to the owner.

The reader may have realized that in this minimization-based reduction, the re-

gions closer to the owner are more likely to have more up-to-date values in their P-

caches that will filter out updates from further regions. This is different for addition-

based reductions (e.g., Histogram) where the P-caches coalesce regional updates that

are eventually propagated to the owner tile on eviction. In either case, data up-

dates are propagated asynchronously and transparently to the software, thanks to

the P-cache design, which we detail in the next section.

4.5.2 Proxy Cache Design

Since the P-cache is configured in software when defining a Parray, it does not intro-

duce significant area overhead when the P-cache is not configured. As aforementioned

in §4.4.4, a portion of the tile’s local SRAM memory is utilized as a direct-mapped

cache (associativity=1), to which the accesses to the local Parray fraction (Parray local)

are directed. The P-cache stores cacheline tags and the valid bit in SRAM too, so the

area overhead of the cache is only the logic gates for tag comparison and configuration
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registers (detailed later in this section). Note that since the footprint of the P-cache,

i.e., Parray local, is known at compile time, the number of bits needed for the tag is

log2 of the ratio between the Parray local elements and the SRAM available to them.

Proxy Cache Misses and Evictions

A miss in the P-cache returns a preconfigured default value. This would correspond

to the initial value of the reduction array, e.g., zero for addition or maximization, or

infinite for minimization. On eviction, the data is either sent as a task invocation

to the owner tile (write-back mode) or ignored (write-through). This reduces NoC

traffic over software-based reductions where the copies of the Rarray are stored in the

data cache, and cache misses and evictions must traverse the memory hierarchy.

Write-propagation Policy

Upon a cacheline being updated or evicted, the data address and value are sent as a

message to the data owner. To enable this, the P-cache—similar to the PU—has the

ability to push into a network channel via the output queues (OQs). For simplicity,

a cacheline contains a single data element to avoid sending multiple messages. To

avoid additional buffers, the TSU ensures that the OQ has sufficient space for the P-

cache to push a task invocation before scheduling any task that may result in P-cache

eviction or update.

Write-back enables coalescing updates to the same cacheline and only sending

the aggregated data to the owner tile upon eviction. The P-cache also self-invalidates

cachelines when the PU is idle and all its OQs are empty. This policy enables the

merging of the proxy values to the owner tile (resembling the reduction tree), asyn-

chronously and opportunistically, throughout the program execution, without having

to wait for the end of the computation phase to merge the results. This mode enables

update coalescing , which is suited for time-insensitive reductions that have either

107



a single computation phase (e.g., Histogram) or a barrier between search epochs (e.g.,

Pagerank).

Write-through , alternatively, has every data update triggering a task invocation

towards the owner tile. This mode enables data filtering for minimization or

maximization operators , as only a new minimum or maximum value writes to the

P-cache. Write-through allows the updates to reach the owner tile as soon as possible

to minimize the redundant explorations of vertices in the frontier. This mode is

suitable for barrierless implementations of graph applications [64], like the SSSP code

in Figure 4.7. With write-through, there is no need for the P-cache to self-invalidate,

as the updates are always pushed to OQs to make their way to the owner.

Proxy Cache Configurations

The P-cache has five memory-mapped configuration registers.

1. Local proxy array fraction: set to Parray/W
2 where W is the width of a

proxy region—determined by eq. (4.1). It determines the range of the tile’s

local address space for which memory operations are directed to the P-cache.

2. P-cache size: set by eq. (4.2). It determines the chunk of the tile’s SRAM

that is reserved for the P-cache.

3. Write-propagation policy: set based on the application needs for data time-

liness, as described above.

4. Channel ID to propagate updates: set to the channel that routes to the

reduction task (e.g., T3 in Figure 4.7).

5. Default value for cache misses: set based on the type of reduction operation,

which could potentially be detected by the compiler.

108



Deciding the Proxy Cache Size

To ease the programmer’s burden for determining the proxy region and P-

cache sizes, we created the following heuristic, which would be set by the compiler

but can be overridden by the programmer if desired. Since Parray local (i.e., the foot-

print of the Parray on the P-cache) is Parray/W
2, where W is the width of a proxy

region (assuming square regions), using C as the maximum desired ratio between

Parray local and the maximum SRAM size to be dedicated to the P-cache (Pcache max),

we compute the smallest region that can be configured Wmin as:

Wmin =

√
Parray

Pcache max · C
(4.1)

We studied various values of C in Figure 4.12 and found C = 16 to maintain

most of the performance benefits of the P-cache. The value for Pcache max depends

on the system integration and the ratio of the dataset arrays to the tile’s SRAM.

For example, on a system where all its memory is distributed across the tiles (e.g.,

Dalorex or Cerebras), Pcache max would be set to use all the free SRAM on the tile.

That could also be the policy for systems with an external memory backing up the

local memories but when the parallelization is such that the dataset arrays fit on

the SRAM. On the contrary, when the local memory is used as a D-cache, Pcache max

would be set to a modest fraction of the SRAM.

Note that eq. (4.1) outputs the smallest region size that can be configured, for

which Parray local would be the largest (C times larger than the maximum P-cache size

configurable). However, the selected proxy region size could be larger, e.g., W=16,

which was experimentally found to be a good balance between the P-cache size and

the proxy region size (Figure 4.11).
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Thus, we could calculate the actual P-cache size as:

Pcache = min(
Parray

(max(16,Wmin))2
, Pcache max) (4.2)

4.5.3 Cascading

Since proxy arrays are distributed across each region in the same way, the proxy tiles

for a particular Rarray element are on the same row/column for horizontally/ver-

tically aligned proxy regions. Therefore, when a task invocation moves towards the

owner tile across the NoC in a dimension-ordered manner, it will naturally pass by

its corresponding proxy tiles en route. This is depicted in Figure 4.6 for two different

owner tiles on a 2D mesh.

As a task invocation passes by a proxy tile, the router can capture it as a proxy

task and execute it on the local PU. Based on the task execution on write-through

(i.e., whether the new value is a minimum or maximum) or upon a P-cache eviction

on write-back, a new task is spawned, which may be captured by the next proxy tile

en route; we call this process cascading.

One could think of two options when it comes to capturing proxy tasks.

• Always Cascading: Every proxy tile en route (i.e., one per proxy region) is

obliged to process the task.

• Selective Cascading: A proxy tile opportunistically decides whether to pro-

cess the task based on the occupancy of its IQ or the contention on the router’s

output port ahead. If the IQ occupancy is less than half of its capacity, or the

network ahead is congested, the tile captures the task. Otherwise, it lets the

task continue toward the owner.

Listing 4.2 shows the logic that we added to the router to support cascading and

its selective mode. We added two configuration registers (for coordinates X and Y)
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1 input [15:0] dest_x , dest_y;

2 input [1:0] input_port; // N,S,E,W

3 reg [15:0] id_x , id_y; // Existing Tile ID Registers

4 // Proxy Configuration Registers

5 reg proxy_enabled_r; // To enable usage of proxy regions

6 reg [3:0] proxy_mask_x , proxy_mask_y; // 4’b0011 for 16x16

7

8 // Whether the opposite -facing port from the inputs N,S,E,W had its buffer full last

cycle , and proxy is enabled

9 reg [1:0] opposite_port_buffer_full_r;

10 // The occupancy of the input queue of the PU is <= half

11 reg PU_IQ_lt_half_full_r; // It includes proxy_enabled_r

12 wire select_msg = PU_IQ_lt_half_full_r || opposite_port_buffer_full_r[input_port ];

13 //We flop id_within to remove a gate from the critical path

14 reg [5:0] id_x_within ={id_x [5:2] & proxy_mask_x ,id_x [1:0]}

15 reg [5:0] id_y_within ={id_y [5:2] & proxy_mask_y ,id_y [1:0]}

16 wire is_proxy_x = {dest_x [5:2] & proxy_mask_x , dest_x [1:0]} == id_x_within;

17 wire is_proxy_y = {dest_y [5:2] & proxy_mask_y , dest_y [1:0]} == id_y_within;

18 // Sequential depth: 6-bit comparator + three AND

19 wire go_to_proxy = is_proxy_x && is_proxy_y && select_msg;

20 // Existing logic: 16-bit comparator + AND

21 wire is_dest = (dest_x == id_x) && (dest_y == id_y);

22 // Adding an OR gate to the critical path of is_dest

23 wire route_to_core = go_to_proxy || is_dest;

Listing 4.2: Snippet of the Verilog code needed to implement proxy regions and
selective cascading. The proxy region is configured by setting the proxy mask and
proxy enable registers (i.e., flip flops). The id x within and id y within registers are
the coordinates of the tile within the proxy region. The select msg wire determines
whether the message should be captured by the proxy region or let through. The
sequential depth of select msg is not worse than the proxy comparison, which is on
par with the sequential depth of is dest. Therefore, the critical path of route to core
is only an OR gate more than the existing logic. Note that the critical path of the
>= operators involved in calculating the cardinal directions is longer than the is dest
logic, and thus, our addition is probably not affecting the overall critical path in most
router designs.

to store the masks of the bit selection that determines whether the tile is a proxy

for a given message (line 7) and a register to enable/disable proxy usage. For every

incoming message, the router determines if the current tile is the owner or proxy tile

of the data (lines 14-21). If it is neither, the router moves the data in the direction

of the owner. If it is the owner, then it directs the data to the corresponding task’s

IQ (T3 in Figure 4.7). Alternatively, if it is a proxy tile, it may capture the message

into the proxy task’s IQ (T3’ in Figure 4.7), based on the occupancy of the IQ and

the buffer of the outgoing network port (lines 9-12).
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Lightweight Additions

As described in Listing 4.2 the logic for identifying a tile as a proxy for a message is

done in parallel with the existing logic that determines whether the tile is the desti-

nation, and thus, we only add one OR-gate to this path (line 25). The critical path

of calculating go to proxy is not longer than the destination is dest logic since the

proxy-mask comparator employs fewer bits, and select msg is determined without

using the message destination. Counting the logic added to the router, Listing 4.2

shows an addition of 20 flip-flops and a few dozen logic gates. This represents a negli-

gible overhead to the overall area of the router given its complex per-port multiplexing

logic and message buffers.

Counting the bits of extra storage as a metric for overhead, we obtain 20 bits for

the router logic and 60 bits for the P-cache configuration registers. This adds up to

∼ 10 bytes of registers plus a few hundred logic gates of overhead per tile.

4.6 Evaluation Methodology

4.6.1 Applications and Datasets

In addition to four graph algorithms, we evaluated one sparse linear algebra kernel

and histogram, to demonstrate the generality of our approach for memory-intensive

applications. We adapted the following applications from the GAP benchmark [18],

Parboil [163] and GraphIt [196], splitting the program into tasks at each indirect

memory access, as shown in Listing 4.1.

• Breadth-First Search (BFS) determines the number of hops from a root vertex

to all vertices reachable from it.

• Single-Source Shortest Path (SSSP) finds the shortest path from the root to

each reachable vertex.
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• PageRank (PAGE) ranks websites based on the potential flow of users to each

page [91].

• Weakly Connected Components (WCC) finds and labels each set of vertices

reachable from one to all others in at least one direction (implemented using

graph coloring [156]).

• Sparse Matrix-Vector Multiplication (SPMV) multiplies a sparse matrix with a

dense vector.

• Histogram counts the occurrences of each value in an array.

We use three sizes of the RMAT [95] graphs—standard on the Graph500

list [113]—RMAT-22, RMAT-25 and RMAT-26, which are named after their number

of vertices. For example, RMAT-26 (abbreviated as R26 in §4.7) contains 226, i.e.,

67M vertices (V) and 1.3B edges (E), and has a memory footprint of 10.6 GiB.

We also use the Wikipedia (WK) graph (V=4.2M, E=101M) in our evaluation to

exercise different graph topologies. The same datasets are used to evaluate SPMV,

as a graph can be seen as a square sparse matrix with V rows and columns and E

non-zero elements. The graphs (as sparse matrices) are stored in the Compressed

Sparse Row (CSR) format without any partitioning, i.e, the dataset contains three

input arrays, one for the values of the non-zeros, one for the column indices of those

non-zeros, and one for the pointers to the beginning of each row in the previous two

arrays. The output array has size V, and its meaning depends on the application,

e.g., for Histogram, it is the count of the column indices of the non-zeros.

4.6.2 Simulator Framework

This evaluation utilizes the MuchiSim simulator framework [131]. MuchiSim is a

functional simulator because the execution of the applications we consider depends
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Memory Model Parameters Values

SRAM Density 3.5 MiB/mm2 [186]
SRAM R/W Latency & Energy 0.82 ns & 0.18 / 0.28 pJ/bit [186]
Cache Tag Read & cmp. Energy 6.3 pJ [186, 190]
HBM2E 6-high Density 12 GiB at 110 mm2 [92]
Mem.Channels & Bandwidth 8 x 64 GB/s [92]
Mem.Ctrl-to-HBM RW Latency & Energy 50 ns & 3.7 pJ/bit [138, 82]
Bitline Refresh Period & Energy 32 ms & 0.22 pJ/bit [158, 56]

Wire & Link Model Parameters Values

MCM PHY Areal Density 690 Gbits/mm2 [11]
MCM PHY Beachfront Density 880 Gbits/mm [11]
Si. Interposer PHY Areal Density 1070 Gbits/mm2 [11]
Si. Interposer PHY Beachfront Density 1780 Gbits/mm [11]
Die-to-Die Link Latency & Energy 4 ns & 0.55 pJ/bit (<25 mm) [121]
NoC Wire Latency & Energy 50 ps/mm & 0.15 pJ/bit/mm [83]
NoC Router Latency & Energy 500 ps & 0.1 pJ/bit
I/O Die RX-TX Latency 20 ns [153]
Off-Package Link Energy 1.17 pJ/bit (up to 80 mm) [182]

Table 4.1: Energy, bandwidth, latency, and area of links and memory devices assumed
for the evaluation.

on the actual data values, so analytical models would not be accurate. All of the

hardware features described in this chapter are implemented in the simulator because

MuchiSim was initially developed to evaluate the work presented in this chapter.

MuchiSim is a cycle-accurate simulator for the NoC and it leverages performance

models for the PUs. This strategy of modeling the NoC in detail while obtaining

the PU runtime with delay-instrumented code allows the simulator to scale to large

systems while providing accurate results. The simulations are validated to provide

correct program outputs over reference implementations running on an x86 server.

More details about the simulator and its performance validation can be found in the

MuchiSim paper [132].

Table 4.1 summarizes the energy, latency, and area parameters for communica-

tion links and different levels of memory. The transistor size modeled for area and

energy is 7nm, with an operating frequency of 1GHz. The PU area is estimated con-

sidering the RISC-V Celerity, Snitch, and Ariane cores [45, 189, 192]. To determine
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the dynamic and leakage power of the single-issue in-order core, we use the reports

from Ariane [190] and transistor power-scaling ratios to calculate the energy of those

operations on a 7nm process [162, 185]. The full set of energy, area and performance

parameters used for this evaluation can be found in the artifact evaluation release for

the results presented in this chapter. 2

For the experiments in this chapter, two types of systems are considered:

1. A multi-chip system where every 32x32-tile chip is attached to a 12 GiB HBM2E

chiplet with eight 64 GB/s memory channels, for the multi-chip experiments on

Figures 4.16 and 4.14.

2. A large monolithic grid of tiles without DRAM, where the dataset is distributed

across the tiles’s PLMs, for the rest of the experiments.

In all experiments, the PLM is 512 KiB, and the NoC is 64-bit wide. The NoC

is a torus in all experiments except for the one characterizing network topologies

(Figure 4.14).

4.6.3 Comparing with the State-of-the-Art

To understand where this work would stand on the Graph500 ranking [113], we ad-

here to their guidelines as much as we can and provide a comparison to the best

performance listed there for the problem sizes evaluated.

Graph500 requires timing separately the reading, preparing, and loading of the

graph onto the system from the graph traversal itself. In our case, we do not per-

form any dataset pre-processing and directly read the CSR structure from the disk.

Based on the Graph500 guidelines, we begin measuring runtime when the search key

is loaded onto the system, and we stop when the last vertex is visited. We report

2github.com/morenes/tascade/releases/tag/April2024
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traversed edges per second (TEPS) as E/time where E is the number of edges con-

nected to the vertices in the graph traversal starting from the search key. 3 Since we

evaluate other workloads than graph search, when reporting TEPS, we consider E the

non-zero elements of the sparse matrix for SPMV, and the array size for Histogram.

Data partitioning is a preprocessing step used in distributed graph processing

to minimize cross-node communication [79, 175]. The techniques introduced in this

chapter are orthogonal to data partitioning as they can be applied within each sub-

graph or problem partition. This evaluation does not use data partitioning as this

work aims to increase the level of parallelism achievable within each partition.

4.6.4 Design Characterization

In addition to evaluating absolute throughput and energy efficiency, §4.7 characterizes

the performance impact of the hardware innovations introduced in §4.4 and §4.5.

Particularly, we show the impact of:

• The proxy regions, with a range of region sizes, over the baseline of no proxy.

• The selective cascading strategy, compared to always or never cascading.

• The asynchronous merging of reductions over having a global synchronization

prior to merging the proxy (copies of) data.

In addition, we characterize these aggregated benefits for three network inter-

connect options, i.e., 2D-torus and 2D-mesh in the monolithic experiments, and a

two-level hierarchical torus for the multi-chip experiments.

3We report TEPS for one search key (id=0), as opposed to random sampling and averaging time
across 64 search keys, given the long simulation time.
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4.7 Results

The path to million-fold scalability was achieved via compound improvements in the

hardware support for data-centric architectures.

Figure 4.8 showcases the aggregated improvements of the Dalorex hardware sup-

port introduced in §4.4 for SSSP on the RMAT-22 dataset. The average PU utilization

went from under 20% to over 90% with the introduction of traffic-aware task schedul-

ing, the reconfigurable torus NoC, and the barrierless execution—enabled by the local

frontier management. This 16 × 16 grid already achieves order-of-magnitude better

performance than prior work Tesseract [4, 133] for this dataset size, but the goal is

to continue scaling to larger grid sizes.

Figure 4.8: Heatmaps showing the utilization of individual PUs in a 16×16 grid, for
four different scenarios, running SSSP on the RMAT-22 dataset. The color indicates
the percentage of the runtime that the PU is active (processing tasks)—darker colors
indicate higher utilization.

Figure 4.9 further studies scalability by parallelizing the processing of the RMAT-

22 and Wikipedia datasets across grid sizes of 64× 64 (212 tiles), 128× 128 (214 tiles)

and 256 × 256 (216 tiles). This is evaluated for several applications with the Dalorex

support, and with and without the Tascade hardware introduced in §4.5.

Figure 4.9 shows that the version without Tascade support (blue) plateaus per-

formance as the grid size increases. This performance plateau is accompanied by a

steep increase in NoC traffic (lower panel in Figure 4.9) due to the longer average dis-
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tance task invocations must travel. This analysis motivates the need for the Tascade

communication-reduction techniques to enable performance scaling.
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Figure 4.9: Performance gain and network traffic with and without Tascade for
three scaling steps for each dataset—64x64 (212 tiles), 128x128 (214) and 256x256
(216) grid—normalized to Dalorex 64x64.

Figure 4.9 shows that Tascade (orange) further unleashes scalability of sparse

applications and achieves good speedups even with the 256 × 256 grid, which has

over 65,000 tiles (216). Note that since RMAT-22 has 222 vertices, this is a massive

level of parallelization. As aforementioned, the key features of Tascade that enable

this are: (1) Coalescing and filtering of updates to distant data—via the P-caches—

coupled with asynchronous task invocation for sending these updates to the owner,

and (2) Cascading the reduction operations sent to the owner through proxy tiles en

route which is equivalent to concurrent reduction trees across the grid.
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The P-cache and the cascading router logic are the key hardware contributions

that enable these two features, and we characterize their impact later in this section.

Evaluation Overview

The rest of the section is organized as follows. §4.7.1 first characterizes the contri-

bution of P-cache-mediated filtering and coalescing in local proxy regions with no

cascading, then shows the additional contribution of cascading. §4.7.2 studies the

impact of the proxy region size, and §4.7.3 analyzes the sensitivity of performance

to P-cache size. §4.7.4 evaluates adding synchronization before merging the proxy

updates, measuring the benefit of asynchrony and providing an upper bound for

the performance of a software-managed proxy. §4.7.5 showcases the performance of

Dalorex, with and without Tascade support, with different NoC topologies. Finally,

§4.7.6 studies strong scaling (by parallelizing RMAT-26 for grid sizes ranging from a

thousand to a million tiles) and checks where its performance stands regarding the

Graph500 list and other works [25].

4.7.1 Evaluating Proxy Caching and Cascading

While able to scale up to thousands of PUs, the single-owner-per-data scheme starts

to show sub-linear performance at thousand-tile scales. In addition to the increased

task-invocation distance, the performance degradation is also caused by the work

imbalance that grows with the parallelization level. Since Dalorex requires tasks

operating on a given data segment to be handled by a single tile, the more tiles

allocated to process a given dataset, the smaller the segment each tile processes, and

the higher the hotness variance across segments.

This section first demonstrates the performance improvement of utilizing proxy

regions where updates can be coalesced or filtered at proxy tiles. Figure 4.10 uses a
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128× 128 monolithic grid (without proxy regions) as baseline. The proxy regions are

of size 16 × 16, for which the proxy segment fits entirely on the tile’s PLM.
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Figure 4.10: Performance, energy efficiency and traffic-reduction gains of the accu-
mulative features of Tascade over the baseline of Dalorex (no proxy).

Figure 4.10 shows that compared to the baseline, merging the proxy data directly

(without cascading) into the owner (Proxy & Merge Owner) already provides a ge-
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omean performance improvement of 4.3×. Additionally, it improves energy efficiency

by 1.4×, in part due to the reduced NoC traffic (2.2×). For applications operating

in write-back mode (PageRank, SPMV and Histogram), the P-caches mainly pro-

vide a coalescing as well as filtering benefit reducing overall traffic. For applications

operating in write-through mode (SSSP, BFS and WCC), updates are propagated

immediately, and the advantage of proxy comes from filtering non-minimal updates,

i.e., reducing traffic.

The Impact of Cascading

While proxy caching at the local proxy region alone significantly improves the perfor-

mance, there are additional gains that can be achieved by continuing to do so at other

proxy regions en route to the owner. This cascading approach effectively implements

a reduction tree across the grid where the owner acts as the root and the proxy tiles

as the nodes of the tree. Figure 4.10 dissects these gains by evaluating cascading at

every proxy (Proxy & Cascade) and selectively (Tascade).

Proxy & Cascade improves performance by 1.2× geomean over Proxy & Merge,

and 5.2× over the baseline. However, its energy efficiency is 3% worse than the

baseline on geomean. Although cascading at every region theoretically reduces the

traffic the most and ensures that all the proxies store the most up-to-date values, it

increases the latency for the owner to see the updates, especially when proxy tiles

are busy. This increased latency causes data staleness that affects negatively the

work efficiency of barrierless graph applications (SSSP, BFS and WCC). Moreover,

since all the proxies must process all cascading updates, it increases the PU energy

consumption over no or selective cascading.

Selective cascading, what we call Tascade, allows the proxy tiles en route to cap-

ture a task invocation when there is network traffic ahead or when the proxy tile is

eager to process the task (i.e., low occupancy on the proxy task’s IQ). Figure 4.10
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shows that with this selective policy, Tascade improves the performance further to a

6× over the baseline, while also improving energy efficiency by 1.2×. While Tascade

increases PU energy by increasing the number of tasks to be processed, it also reduces

one of the main sources of energy—the NoC—since the traffic decreases significantly,

2.6× over Dalorex. Next, we dive deeper into analyzing the performance impact of

proxy region sizes.

4.7.2 Optimal Proxy Region Size

The importance of the choice of proxy region size is evident when one considers the

two extremes of proxy region size of a single tile versus the entire grid size. On

one end, with a single tile proxy region, all tiles would have to cache the entire array

creating a high storage cost or low P-cache efficiency when the P-cache size is limited.

In addition, the cascading would be considered at every tile. With the proxy region

size equal to the entire grid, one would recover the same configuration as Dalorex.

Therefore, there is a middle ground where the performance-optimal proxy region

size lies. Note that the smaller the proxy region the larger the proxy segment (the

address range that a tile is a proxy for), and thus, with a constant P-cache size, the

more frequently the values are evicted. Thus, we also expect the optimal point to be

impacted by the available PLM size that can be dedicated to the P-cache.

For a total grid size of 128 × 128, Figure 4.11 evaluates the performance of proxy

region sizes of 32 × 32, 16 × 16 and 8 × 8. The bars for the last two options overlay

two cases: when the increasing proxy segment sizes are stored in the P-cache in full

(light-colored bars) and when the P-cache size is kept constant (dark-colored bars)

at the size of the proxy segment with 32 × 32 regions, 16 KiB in this case. This is

shown to understand the peak gains and the tradeoff between a smaller proxy region

and a larger proxy segment to cache.
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Figure 4.11: Performance, energy efficiency and traffic-reduction gains of decreasing
proxy region sizes, normalized to the baseline of Dalorex without proxy. The bars
16 × 16 and 8 × 8 overlay two cases: when the increasing proxy segment sizes are
stored in the P-cache in full (light-colored bars) and when the P-cache size is limited
to the size of the proxy segment with 32 × 32 regions (dark-colored bars).

In the unlimited case, performance generally increases as the proxy region size

decreases, with a few exceptions. However, with a limited cache size, the 8 × 8 does

not significantly improve over the 16 × 16 case. This is because with a smaller cache
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size values get evicted more often, leading to less coalescing of the updates. In the

next section, we examine the impact of P-cache size using a proxy region size of

16 × 16.

4.7.3 Impact of Limiting Proxy Cache Capacity

In order to understand the performance impact of limited P-cache capacity, Fig-

ure 4.12 evaluates the configurations of Tascade with 128 × 128 tile grid, 16 × 16

proxy regions and decreased the PLM budget allocated for the P-cache at each step.

These sizes range from 64 KiB (the size of the proxy segment for this dataset and

region size) to 1/64 of that, i.e., 1 KiB. Note that the effective P-cache size is smaller

than the PLM allocated for it due to the tags.

Figure 4.12 (top) shows some differences in the performance impact of P-cache size

reduction across applications and datasets. While in some cases performance remains

stable or decreases in the first halving steps (e.g., BFS and SSSP), in others it may

even increase despite the pressure on the P-cache (e.g., PageRank and SPMV). This

increase is caused by having fewer elements to flush from the P-cache towards the end

of the program—since they were already merged into the owner tile upon eviction.

On geomean, the performance remains around the 6× mark until the P-cache budget

is reduced by 16× or more. Nonetheless, the performance of 1/16 and 1/64 cases

(with 4 KiB and 1 KiB of storage) is still above the baseline of no proxy, with a 5.2×

and 3.4× improvement, respectively.

Figure 4.12 (center) also displays the gains in energy efficiency with proxy regions,

which are correlated with the savings in NoC traffic. NoC traffic reduction rates over

the baseline range from 2.6× to 1.5× from the full P-cache size to the smallest one

(1/64). Energy efficiency also decays with more constrained cache sizes, however, the

geomean gains remain above the baseline in all but the last case. These results show

dataset- and application-dependence, however overall trend is highly consistent.
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Figure 4.12: Performance, energy efficiency and traffic-reduction gains of decreasing
P-cache sizes, normalized to the baseline of Dalorex (no proxy).

4.7.4 The Benefits of Asynchrony

One of the main advantages of implementing proxy caching and selective cascading

on top of the Dalorex execution model is that it allows for reductions to be merged

asynchronously. This is implemented seamlessly thanks to the hardware support in-
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troduced in the Tascade approach. Estimating the impact of asynchrony is especially

important since software approaches to reduction trees often utilize such a synchro-

nization step. Figure 4.13 studies the cost of synchronization by evaluating the proxy

approach with and without a barrier prior to merging the proxy data.
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Figure 4.13: Characterization of the performance and energy efficiency of Tascade
and two versions with a barrier synchronization before merging all proxy data (with
and without cascading), normalized to the baseline of Dalorex.

Figure 4.13 shows the performance of merging the proxies directly at the data

owner (Sync & Merge) or via full cascading (Sync & Cascade) after the barrier is

reached by all the PUs. Tascade yields a 1.6× improvement over Sync & Cascade

and 2.3× over Sync & Merge, thus showing the benefits of asynchrony.

Since in this experiment, the P-cache stores the entire segment (proxy regions of

size 16x16), Figure 4.13 also characterizes the runtime improvement of starting to
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flush the P-caches towards the end of the program when PUs are often idle, instead

of waiting for every PU to reach the barrier. Moreover, merging asynchronously in

Tascade improves energy efficiency by 14% geomean over the synchronous cascade

version.

Comparison to Software-managed Reduction Trees

The synchronous versions of the proxy approach evaluated above represent an up-

per bound to the performance expected from a software-managed approach since the

hardware components introduced by Tascade provide additional benefits. For exam-

ple, these versions still use the P-cache in hardware instead of a software-managed

copy of the reduction array. Moreover, the cascade version shown in Figure 4.13

(yellow) is only synchronous before the cascading starts, and the cascading itself is

asynchronous once it starts.

4.7.5 Impact of the NoC Design Choice

We envision that the hardware-enabled asynchronous reduction of Tascade can be

utilized in a broader set of systems ranging from server-class [9, 114, 116, 168] and

wafer-scale manycores [129, 139], to clusters of these chips connected [98, 115].

Since a torus is not a common NoC found in AI-oriented manycores [2, 52, 171], we

also wanted to characterize the performance of the Dalorex execution model with and

without Tascade support on a mesh. In addition, as an alternative to the monolithic

implementation, one may use server-class-sized chips, connected with a board-level

or cluster-level interconnect. Thus, we also performed experiments evaluating the

improvements of Tascade when using an inter-chip interconnect as well.

Figure 4.14 shows the performance improvement of Tascade with mesh, torus, and

Inter-chip networks, over the baseline of a 2D torus without Tascade support, for the

same grid sizes (128 × 128).
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Figure 4.14: Performance and energy efficiency gains of applying Tascade to three
different networks normalized to the baseline of a torus without proxy.

Tascade yields large performance improvement over no proxy for all NoC types

with 5.7×, 6× and 5.4× geomean, for multi-chip, monolithic torus chip, and mono-

lithic mesh chip, respectively. Moreover, Tascade improves energy efficiency across

the board.

The inter-chip datapoint in Figure 4.14 uses a hierarchical torus, one that con-

nects each chip, and one that connects tiles within the chip. The hierarchical torus

connectivity reduces the average distance that task invocations must travel to some

extent, and thus, the performance gains are slightly lower than the monolithic torus.

128



Higher Effective Bandwidth

When using proxy regions, much of these data updates are coalesced or filtered within

the proxy region. When most of the communication is regional, the effective bisection

bandwidth gets closer to the bisection of the region times the number of proxy regions.

Figure 4.15 demonstrates this effect by depicting the heatmap of the PU and

router activity on a mesh NoC without proxy regions (left) and utilizing Tascade

(right) when running BFS. 4

Takeaway

Proxy regions and selective cascading reduce work imbalance by allowing multiple tiles

to operate on the same address range; reduce the number of bytes traversing the NoC

by coalescing/filtering updates en route to the owner tile; and balance NoC and PU

contention by opportunistically deciding whether proxy tasks are captured at proxy

tiles or let through.

4.7.6 Strong Scaling Up to a Million Tiles

Up to this point, we have analyzed the contribution of different design aspects to

performance using a 128 × 128 grid (214 tiles). Figure 4.16 now presents absolute

numbers when scaling the parallelization from a thousand PUs to over a million PUs

(210 to 220) by quadrupling the number at each step. In these experiments, we use

16× 16 proxy regions until the 216 parallelization, and 32× 32 regions beyond that. 5

The level of parallelization goes orders of magnitude beyond what has

been demonstrated in prior work. Figure 4.16 shows how throughput scales well

with the number of tiles, with some signs of plateauing at the last datapoints. The

4Figure 4.15 displays an animation of the time evolution of the router activity throughout the
application execution when visualized as GIF by opening this PDF with Adobe. The animation is
composed of snapshots at a rate of a frame per 40 microseconds.

5The rationale for that is to decrease the memory footprint of the simulator itself, as the number
of proxy regions scales quadratically with the grid size when keeping the proxy region size constant.
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Figure 4.15: PU and router activity when running BFS on RMAT-22 without proxy
(left) and with proxy regions of 8x8 (right). Router activity denotes messages being
routed; no activity can mean that the router has no messages to route, or that the
NoC is clogged and messages are stuck.

gap between Operations/s and TEPS represents the number of instructions needed

to traverse an edge (or multiply a non-zero element in the case of SPMV). 6

Figure 4.16 (bottom) showcases that the energy efficiency of Tascade—measured

by TEPS/Watt and Ops/Watt—remains relatively stable in this range of scaling, only

decaying towards the last datapoints. Note that these are extreme parallelization

6This gap widens with scale for barrierless graph applications (SSSP, BFS and WCC), as work
efficiency decreases with data staleness, i.e., frontier vertices are revisited before all updates are
merged.
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Figure 4.16: Throughput in TEPS and operations/s, and the average on-chip mem-
ory bandwidth needed to achieve that. The X-axis is the size of the grid used when
analyzing strong scaling RMAT-26, ranging from a thousand to over a million tiles.
The bottom plot shows energy efficiency.

levels already, i.e., on the last scaling step the 226-vertex graph is parallelized across

220 tiles, equating to 64 vertices per tile (and 20 times as many edges).

Further improving scalability through better data placement methods and by com-

bining it with graph partitioning [43, 44, 79] are possible avenues for future work.

Throughput-per-watt likes fitting the dataset to the on-chip memory

Figure 4.16 (bottom) shows that throughput-per-watt peaks at 216 PUs, i.e., 210

vertices per PU. This is the parallelization level at which the entire dataset fits on-
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chip, and thus, the tile memories can be configured as scratchpads. Throughput-per-

watt drops significantly after that level, where there are 64 chips. The inter-package

links are more power-hungry than the links within the package, hence the drop in

efficiency.

Petabyte/s of memory bandwidth

As mentioned earlier, data-structure traversal has a low arithmetic intensity. Fig-

ure 4.16 demonstrates how much memory bandwidth is required to maintain a high

target throughput. For the 1-million-tile configuration, SPMV reads, on average, over

a PB/s from their local memories with an arithmetic intensity of 0.09 FLOPs/byte.

At peak throughput of execution, SPMV reads 2.2 PB/s to perform 100 TeraFlop/s.

This configuration uses 1024 chip packages and draws 20 KW of power on average and

29 KW at its peak, where power density stays within the tens of mW/mm2—suitable

for air cooling.

In the context of the Graph500 list

The top entry for BFS on RMAT-26 is the Tianhe Exa-node (Prototype@GraphV) [113],

delivering 884 GTEPS. For that size, our work achieves 3540 GTEPS with 218 PUs

(256 chips) and 7630 GTEPS with 220 (1024 chips). The smallest dataset size with

an entry higher than 7000 GTEPS is RMAT-36, which is a thousand times larger

than RMAT-26. Since weak scaling is more attainable than strong scaling (e.g.,

Argonne’s Mira or Fugaku [115]), we would expect our work to achieve even higher

throughput for datasets of this size.

For smaller datasets like RMAT-22, the best performing prior work measured 70

GTEPS [25] running these codes [99, 179] on a V100-SXM3 GPU. For that size, our

216 PU configuration—evaluated in Figure 4.9—yields 1,760 GTEPS (25× higher).
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4.8 Chapter Summary

This chapter presented Dalorex, an execution model that follows the principle of

operating at the data location by assigning each PU the responsibility of an equal-size

chunk of the memory address space. This model is beneficial for sparse applications

that—because of their frequent pointer indirection—do not benefit from the spatial

or temporal locality that shared-memory systems rely on. By not bringing blocks

of remote data to a PU and instead spawning tasks for the PU that owns the data,

Dalorex minimizes network traffic for sparse applications. In addition, this model

exposes pipeline parallelism and makes execution insensitive to latency as long as the

pipeline effect is maintained.

The Dalorex execution model necessitates hardware support to make it efficient

and scalable. To achieve data-centric execution at scale this chapter has introduced

a series of lightweight hardware innovations: the traffic-aware task-scheduling unit,

the reconfigurable folded torus, and the Tascade hardware support for asynchronous

and opportunistic reduction operations.

This hardware-software co-design has resulted in a scalable architecture exhibiting

strong scaling of billion-edge graphs up to a million PUs, with 8.6× higher perfor-

mance than the top entries of the Graph500 list for that problem size and 25× for a

100M-edge graph.
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Chapter 5

Conclusion and Future Work

This chapter highlights the contributions of this dissertation to the fields of com-

puter architecture and hardware design verification. It then discusses future research

directions and ends with a remark on the future of computing system design.

5.1 Contributions and Conclusions

The slowdown in the progress of transistor miniaturization and the growing demand

for worldwide computing has led to the diversification of hardware architectures based

on the specific application domains and deployment requirements.

In this context, my dissertation has focused on addressing two major challenges:

1. Despite the importance of graphs and sparse data structures, modern parallel

systems do not efficiently process these workloads due to their irregular mem-

ory accesses (IMAs) and low arithmetic intensity. My work introduces novel

hardware support for these applications while preserving programmability and

practicality for real-world deployment.

2. The complexity of hardware design and verification grows with the number of

unique hardware modules, and with it, the potential for a particular module
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to hang the rest of the system-on-chip (SoC) if it does not behave correctly.

My work empowers hardware designers to exhaustively test that their modules

always make forward progress.

These two challenges are connected by the implementation of some of the hard-

ware innovations for sparse workloads into the DECADES SoC (§1.2). In addition

to performance gains, my designs in DECADES aimed to reduce integration and

verification burdens, which are crucial for real-world adoption.

Lowering the Entry Barrier to Formal Verification

This dissertation contributes to the agile development and verification of new hard-

ware components by facilitating the use of formal verification tools for hardware

designers. Particularly:

• This dissertation introduces in Chapter 2 a frontend to Formal Property Veri-

fication (FPV) tools that facilitates using them to test hardware RTL modules

as they are developed. To do that, my work identified common interaction

patterns between modules and captured them in a simple language, AutoSVA,

which is used to annotate RTL module interfaces with the expected behavior

for each transaction (request-response).

• This dissertation develops a toolflow that uses these annotations to build a high-

level model of the module interactions and automatically generate an FPV test-

bench with properties according to the annotated behavior. Because only the

interface is annotated, AutoSVA can be used even before starting to write the

module’s RTL, allowing for a more agile and test-driven development process.

My work on facilitating formal verification has had real-world impact:

• It has been used to test several modules in the DECADES System on Chip

(SoC), including the OpenPiton caches, the MAPLE engine, and the RISC-
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V CVA6 Ariane core, uncovering and rectifying critical bugs that would have

ended up in silicon. Beyond the DECADES chip, the bugs uncovered and fixed

by my work on Ariane were incorporated into its open-source repository [123]

and have prevented them from being present in later chip tapeouts using Ariane.

• The AutoSVA toolflow is open-source [127] and has over 60 stars and 20 forks

on GitHub, among them many academic researchers and industry professionals.

• AutoSVA has been featured on two industry-related blogs [120, 187], in addition

to having spurred several conversations with semiconductor and EDA companies

to discuss use cases and extensions.

• AutoSVA has been integrated into two later projects that augment its capabil-

ities for extended RTL coverage and security [128, 135].

Practical and Efficient Hardware Support for Sparse Applications

This dissertation makes several contributions to accelerating the memory- and

communication-bound sparse application domain, by providing hardware-software

co-designs that are effective and scalable while remaining programmable and efficient

for other application domains. These contributions are applicable at different deploy-

ment scales (e.g., from embedded to supercomputers) and target needs (full-stack

systems or accelerators). Particularly:

• This dissertation introduces in Chapter 3 the MAPLE memory-access engine,

that mitigates the latency of IMAs via prefetching, decoupled access-execute,

pipelining, and asynchronous atomic operations [106].

• To integrate MAPLE in an SoC minimizing the verification burden, my work

introduces a communication interface between off-the-shelf CPU cores and ac-

celerators in which hardware support for specialized data-access techniques can
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be provided without changes to the CPU, the ISA, or the memory hierarchy,

and in compliance with operating systems and virtual memory.

• MAPLE’s RTL implementation has been formally verified, open-sourced, and

taped out into silicon within the DECADES chip. It has been tested on the

DECADES chip, where CPU cores using MAPLE achieved 2× improvements

over software-only techniques when running graph and sparse applications. The

combination of software-orchestrated data accesses with hardware support is

what also renders MAPLE nearly 2× faster than prior hardware prefetching

techniques.

• This dissertation identifies a series of scalability problems of sparse applications

that appear one after another when the previous bottlenecks are addressed.

Once the latency of IMAs is mitigated with MAPLE, a memory bandwidth

bottleneck arises, due to the low effective utilization of these fine-grain IMAs.

• To continue scaling beyond what is achievable with off-the-shelf CPUs and mem-

ory hierarchies, this dissertation introduces Dalorex in Chapter 4 a novel exe-

cution model and architecture design. In Dalorex, a program is split at pointer

indirection into tasks so that they access a confined address range and execute

at the processor responsible for it. Dalorex improves data locality by migrating

the compute to the data, which unveils the next bottleneck, irregular commu-

nication of task invocations.

• To efficiently support this data-centric execution, this dissertation proposes a

plethora of hardware innovations, including:

1. A task-scheduling unit that prioritizes the execution of tasks based on NoC

traffic to maximize overall utilization
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2. The Tascade support for asynchronous and opportunistic reductions to

decrease communication and improve work balance.

3. A software-configurable folded torus NoC and memory hierarchy.

• This data-centric architecture archives 25× and 8.6× faster runtimes than

the top entries of the Graph500 ranking for 100-million-edge and billion-edge

graphs, respectively (without resorting to dataset partitioning, which could yield

even further gains).

My efforts on accelerating sparse applications have had real-world impact.

• MAPLE has been open-sourced [125] and utilized as the groundwork for subse-

quent research on accelerator integration and communication [180].

• The MAPLE paper was awarded an honorable mention at the IEEE Micro Top

Picks 2023.

• The Dalorex evaluation framework has been open-sourced [131] and used as

a comparison for subsequent research on scalable architectures for the sparse

application domain [32].

• The Dalorex work was awarded the gold medal at the ACM/SIGMICRO 2022

Student Research Competition (SRC) [3].

• Via several industry co-op programs, my work addressing data-intensive work-

loads has also contributed to the research and development efforts of Cerebras

Systems and AMD.

Conclusions

This dissertation presents several software and hardware innovations dedicated to

advancing the frontiers of parallelization for sparse applications while preserving
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programmability and practicality for real-world deployment. In the context of the

Cambrian explosion of heterogeneous hardware, novel designs need to consider the

implementation and verification effort required to materialize them. With an em-

phasis on scalability as well as development agility, this dissertation is set to inspire

further research on facilitating rapid and correct hardware development to address

the growing need for scalable computing in current and future applications.

5.2 Future Work

This dissertation presented innovations across the hardware-software stack, including

a toolflow to facilitate test-driven development of hardware. These contributions

also serve as stepping stones toward future research and development. This section

describes several future research directions that build upon the contributions of this

dissertation.

5.2.1 Extending the Coverage of Automatically Generated

Formal Properties

FPV has existed for decades and is effective at finding intricate RTL bugs. However,

formal properties, such as those written as SystemVerilog Assertions (SVA), are time-

consuming and error-prone to write, even for experienced users. The AutoSVA work

introduced in this dissertation has lightened this burden by raising the abstraction

level so that properties are generated from high-level annotations to the RTL interface.

However, this does not eliminate the manual effort of reasoning and writing about the

detailed hardware behavior. Motivated by the increased need for FPV in the era of

heterogeneous hardware and the advances in large language models (LLMs), a future

research direction is to explore using LLMs to capture RTL behavior and generate

correct SVA properties.
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My early exploration in this direction [128] has shown a very promising opportu-

nity to use GPT4 [122] (when prompted appropriately) to increase the extent of the

RTL covered with automatically generated formal properties.

Figure 5.1 depicts at a high level how the AutoSVA framework can be extended

with an LLM-based flow to generate safety properties, in addition to facilitating their

existing flow for liveness properties. We also added an extra flow (blue arrows) to

lighten the effort of adding annotations to the RTL module interface. The engineer

in the loop revises the annotations and the generated SVA, and corrects them if

necessary.

RTL Module

GPT4

SVAGen
Prompt

AutoSVA2

FPV Testbench (FT)

SVA Liveness
Properties

AutoSVA
Annotations

GPT4 AnnotationGen
Prompt

Engineer

SVA Safety
Properties

Audit
&

Refine

Figure 5.1: Diagram of the AutoSVA flow extended with a new SVA generation
based on LLMs: the original AutoSVA flow is shown with thin boxes and arrows; the
additional LLM-based flow is shown with thick boxes and arrows. The engineer in
the loop revises both the annotations and the generated SVA.

5.2.2 Using FPV to Harness LLM-generated RTL

LLMs are also showing very promising results in generating RTL from high-level de-

scriptions [174]. However, unlike high-level synthesis (HLS), the RTL generated with

LLMs has no guarantee of matching the high-level description. In this context, formal
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verification of RTL can be the key to unlocking the potential of LLMs in generating

RTL that we can trust. By closing the loop between RTL generation and verification,

one could use the feedback from the FPV engine to guide the prompting process of

the LLM to correct the code it generated. This feedback loop can continue until all

the properties are proven or the improvements plateau. That condition could serve as

a starting point for the hardware designer to complete the RTL implementation. In

this vision of the future, most of the engineering effort should shift towards building

a complete FPV testbench, since that is the root of trust for the generated RTL.

5.2.3 Large-scale Parallel Architectures for Sparsity in AI

Beyond employing AI to aid computer design, there are opportunities to accelerate

AI itself. We are currently hearing from industry leaders that AI needs to move

toward sparsity given the growing size of AI models. We have already seen much

research in pruning and sparsity techniques for AI models in recent years, but given

that GPUs are the predominant hardware platform for AI, deployed techniques have

favored coarse-grain or structured sparsity to avoid indirect memory accesses (IMAs).

There is an opportunity to co-explore unconstrained sparsity and hardware sup-

port for IMAs in large-scale parallel architectures (as brought by my work [130, 133,

134]) to execute AI models more efficiently. This would require a holistic approach,

from AI models to hardware, for which interdisciplinary research is essential.

5.2.4 Dynamic Address-space Mapping for Improved Work-

balance in Data-centric Architectures

One of the contributions of the evaluation framework put forward by this dissertation

is the ability to uncover performance issues that appear at a large scale—once the
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previous bottlenecks are mitigated. Thus, there is still room for improvement from

the results presented in Chapter 4.

Extending the Dalorex scheme of statically assigning equally-sized address ranges

to processing elements, one can explore the dynamic assignment of address space

responsibility, so that the work is balanced across, even when the data is not. This

dynamic address-space management could be assigning different numbers of address

blocks to each processor over time, based on how busy they are. This approach would

require hierarchical task queues for efficient management.

5.2.5 Hardware-software Interfaces in Chiplets for System-

in-Package Modularity

Open-source hardware platforms such as ESP [29] and OpenPiton [15] already let you

integrate your custom IP block (e.g., the MAPLE memory-access engine) and generate

the RTL for the entire SoC. However, there are still many hardships in putting the

entire SoC through the backend flow for chip manufacturing, as the DECADES team

experienced firsthand.

Drawing inspiration from the composability of these SoC generator platforms, one

could use chiplets in a similar modular fashion to create System-in-Package (SiP) de-

signs. This would simplify the tape-out process as designers are only responsible for

fabricating the chiplet of the custom IP block, which can also be done in a different

transistor node than the rest of the SiP if desired. Moreover, SiPs facilitate integra-

tion with proprietary hardware and software, which opens the door to using mature

industry ecosystems. This promising path opens some research questions that I am

keen to explore, such as how to design and verify the hardware interface between the

custom chiplet and the rest of the SiP, and how is the software stack going to support

this integration.
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5.3 Summary

This dissertation introduces innovations across the hardware-software stack dedicated

to advancing the frontiers of parallelization for sparse applications. To accelerate these

data-intensive workloads while supporting the increasingly heterogeneous require-

ments of modern applications, this dissertation advocates for scalable, programmable

and agile systems. Toward the agility goal, this dissertation has proposed frictionless

integrations of hardware components, as well as developed methodologies to facilitate

the use of formal verification as a tool for test-driven development.

This dissertation has created tangible impacts on the computer architecture and

EDA fields. The tools and designs put forward in this dissertation have been open-

sourced, used in subsequent research, and have garnered recognition from academia

and industry.

In the current landscape of large language models, verification is becoming more

important than ever. With an emphasis on scalability as well as hardware verification,

this dissertation aims to foster research and development in this direction, to address

the growing need for computing in current and future applications.
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pled architectures for complexity-effective general purpose computing. ACM
SIGARCH Computer Architecture News, 29(5):56–61, 2001.

[167] Stuart Sutherland. Who put assertions in my RTL code? And why? How RTL
design engineers can benefit from the use of sva. SNUG Silicon Valley, pages
1–26, 2015.

[168] Raja Swaminathan and John Wuu. Chiplet’s march to AMD 3D V-Cache
and beyond, 2022. https://www.opencompute.org/events/past-events/

hipchips-chiplet-workshop-isca-conference.

[169] Synopsys. Static and formal verification. https://www.synopsys.com/

verification/static-and-formal-verification.html.

[170] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk,
Christos Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun,
John Magnus Morton, Agreen Ahmadi, Todd Austin, Michael O’Boyle, Scott
Mahlke, Trevor Mudge, and Ronald Dreslinski. Prodigy: Improving the memory
latency of data-indirect irregular workloads using hardware-software co-design.
In Proceedings of the IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 654–667. IEEE, 2021.

[171] Emil Talpes, Douglas Williams, and Debjit Das Sarma. Dojo: The microarchi-
tecture of tesla exa-scale computer. In IEEE Hot Chips 34 Symposium (HCS),
pages 1–28. IEEE Computer Society, 2022.

[172] MD Taylor, Walter Lee, Saman P Amarasinghe, and Anant Agarwal. Scalar
operand networks. IEEE Transactions on Parallel and Distributed Systems,
16(2):145–162, 2005.

159

https://www.opencompute.org/events/past-events/hipchips-chiplet-workshop-isca-conference
https://www.opencompute.org/events/past-events/hipchips-chiplet-workshop-isca-conference
https://www.synopsys.com/verification/static-and-formal-verification.html
https://www.synopsys.com/verification/static-and-formal-verification.html


[173] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Gho-
drat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Wal-
ter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker
Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal. The RAW
microprocessor: A computational fabric for software circuits and general-
purpose programs. IEEE Micro, 22(2):25–35, 2002.

[174] Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin
Tan, Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking
large language models for automated verilog RTL code generation. In 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1–6. IEEE, 2023.

[175] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. From ’think like a vertex’ to ’think like a graph’. Pro-
ceedings of the VLDB Endowment, 7(3):193–204, 2013.

[176] Kim-Anh Tran, Trevor E Carlson, Konstantinos Koukos, Magnus Själander,
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